City of Oceanside

San Luis Rey Wastewater Treatment Plant

Sewage Sludge Annual Report 1999

Date: February 16, 2000

Name of Generator: City of Oceanside Water Utilities Department

Location: San Luis Rey Wastewater Treatment Plant

3950 North River Road Oceanside, California 92054

Mailing Address: City of Oceanside

Water Utilities Department 300 North Coast Highway

Oceanside, California 92054-2885

Contact Person: Guss Pennell, Environmental Regulatory Compliance Officer

Telephone: 760-966-8795

Flow MGD (average): 8.7 MGD (1999 Effluent average)

Plant Description: The San Luis Rey Wastewater Treatment Plant (WWTP) is an activated sludge treatment facility that has a design capacity of 10.7 MGD. It is a Class I sludge management facility with an approved pretreatment program.

Sludge Treatment Process: This treatment facility has three anaerobic digesters with all in operation at this time. Each digester has a capacity of 630,000 gallons. Normal operation at this facility would consist of two heated and mixed primary digesters (#2 & #3) with a secondary digester (#1) that is heated but not mixed. Primary clarifier sludge is pumped into both of two anaerobic digesters that are mixed and heated. Waste activated sludge is thickened in a dissolved air floatation unit and pumped into the two primary digesters. Digested sludge from the secondary unit would be dewatered and land applied.

The treated sludge was injected with hydrogen peroxide for odor control prior to dewatering from January to March of 1999. Ferric chloride replaced the peroxide in April of 1999. The treated sludge was dewatered with two 2.2-meter filter belt presses. The dewatered sludge (15.6% Total Solids Annual Average) is loaded into 30 cubic yard end dump trailers and trucked to San Diego County (1257.3 Dry Metric Tons) or Riverside County (463.6 Dry Metric Tons) for direct land application to agricultural fields by RPI Bio Gro, a Waste Management Company.

If land application was not possible, Copper Mountain Landfill in Arizona would be the disposal location. No sludge was hauled to Arizona in 1999.

Location: San Luis Rey Wastewater Treatment Plant – Continued:

The land application is according to the EPA's protocol for Class B biosolids. The sludge was incorporated into the ground within 24 hours according to Riverside County Ordinance #696. All 1999 hauling was done under contract with Waste Management of North County.

Total Sludge Generated in 1999: 1720.9 Dry Metric Tons

Sludge Delivered to RPI Bio Gro: 1720.9 Dry Metric Tons Total

San Diego County: 1257.3 Dry Metric Tons Riverside County: 463.6 Dry Metric Tons

Address of Land Application Facility: RPI Bio Gro

172 98th Ave.

Oakland, CA 94603 510-613-2831

Sludge Delivered to Arizona Landfill: 0 Dry Metric Tons

Address of Next Preparer: Copper Mountain Landfill

35 East County 12th Street Welton, Arizona 85356

520-782-6355

Location: San Luis Rey Wastewater Treatment Plant – Continued:

§503.13

Table 3

Pollutant Concentrations (Metals): January to December 1999, analyzed monthly but reported as bimonthly averages on Notice and Necessary Information (NANI) certifications. These are attached.

The data below is taken from the monthly data sheets. Metals are expressed as Total and Units are mg/kg Dry Weight. All values are within Table 3 Limits.

3000.10	1 45.0 0						
Pollutants	Limits	Jan.	Feb.	March	April	May	June
Arsenic	41	4	4	4	4	ND	5.8
Cadmium	39	3.25	3.20	3.53	4.27	4.8	7.1
Chromium	No Std.	25.4	24.1	25.4	27.1	38.3	73.5
Copper	1500	385	378	299	312	273	321
Lead	300	15.5	14.0	14	10	ND	20
Mercury	17	1.55	1.23	1.2	1.3	2.4	LA
Molybdenum	* 75	14	10	10	10	11.1	19.7
Nickel	420	29.4	27.6	30.8	39.2	46.9	64.0
Selenium	100	10.8	10.9	9.21	9.76	ND	11
Zinc	2800	826	772	694	729	707	781
% T.S.	No Std.	16.0	15.9	16.5	14.6	15.7	15.1
§503.13	Table 3						
Pollutants	Limits	July	Aug.	Sept.	Oct.	Nov.	Dec.
Arsenic	41	6.05	6.23	5.18	6.23	6.23	5.29
Cadmium	39	2.21	2.33	2.61	ND	2.69	5.97
Chromium	No Std.	62.9	43.6	32.9	32.8	39.4	34.9
Copper	1500	253	260	292	295	341	344
Lead	300	18.1	19.7	18.1	19.1	40.7	22.3
Mercury	17	1.6	1.64	1.32	0.34	2.44	1.69
Molybdenum	* 75	16.8	13.4	10.6	12.2	10.5	14.5
Nickel	420	47.6	35.5	34.3	29.4	55.9	54.7
Selenium	100	8.25	8.11	9.21	10.8	11.5	12
Zinc	2800	619	654	704	764	666	766
% T.S.	No Std.	14.7	16.2	14.9	14.9	16.4	15.9

^{* 75 –} Molybdenum Limit from Table 1.

ND None Detected

LA Lab Accident, no data for this parameter

Location: San Luis Rey Wastewater Treatment Plant – Continued:

Pathogen Reduction: Class B requirements for direct land application in 503.32 (b) (2) Alternative 1 were met by the San Luis Rey WWTP for six bimonthly monitoring periods for January through December 1999. See attached Notice and Necessary Information (NANI) Certificates with the supporting laboratory report.

Vector Attraction reduction: The vector attraction reduction requirements in 503.33 (b) (1) or Option 1 were met by the San Luis Rey WWTP for the bimonthly monitoring periods for January through April and July through December 1999. The 38% reduction in volatile solids requirement was not achieved during May and June 1999. The volatile solids reduction was close (May 36.4% and June 37.3%) to the requirements during the two months of non-compliance. See attached NANI Certificates.

In April 1999 the plant started adding ferric chloride to the primary sludge. This reduced the hydrogen sulfide and slowly improved the operation of the two primary digesters. The sludge level in the #1 secondary digester was lowered to control odors due to the floating cover. This reduced the overall capacity and detention time for the three digesters. Approximately half of the solids entering the primary digesters come from the secondary aeration tanks. These solids are lower in volatile solids content than the raw sludge from the primary tanks. This makes it more difficult to reduce the volatile content through further digesting.

Designs are underway for adding two additional fixed cover pump mixed heated primary digesters. The current #1 floating cover secondary digester will be converted to a fixed cover pump mixed digester as well. The project should be completed by 2004. This should allow adequate capacity for planned build out of the City. A gravity belt thickener will also replace the existing dissolved air floatation thickener for secondary aeration solids. Centrifuges will replace the belt presses during this project. The increases in capacity and solids thickening should correct any deficiencies in the sludge handling system.

RPI Bio Gro incorporates the sludge into the soil within 24 hours as required by Riverside County Ordinance #696. Their usual practice is to incorporate the sludge within six hours. This would satisfy the vector attraction reduction option 503.33 (b) (10) but they cannot certify that this happened 100% of the time. RPI Bio Gro is immediately notified if our wastewater treatment plant experiences a problem and the reduction is going to be less than 38% for several days. RPI Bio Gro will incorporate the sludge within six hours thereby satisfying option 503.33 (b) (10) until our conditions improve.

Location: San Luis Rey Wastewater Treatment Plant – Continued:

Notice and Necessary Information (NANI) Certificates: See following pages

NOTICE AND NECESSARY INFORMATION (NANI)

This form is to assist compliance with the bulk sewage sludge (biosolids) notification requirements [503.12(f)]. Please note, however, that if the biosolids meet the exceptional quality criteria, then the notification requirements do not apply. This form can be used by preparers of biosolids to transmit information to land appliers and also by land appliers to transmit information to land owners or lease holders.

Facility and Biosolids Type: San Luis Rey WWTP Dewatered Digested Sludge Monitoring Period: From 01/01/99 To 02 /28 /99

To be Completed by PREPARERS of Biosolids

Please provide pollutant concentrations

В

Name	Concentration (mg/kg) Dry Weight	Pollutant Concentrations (Table 3, 40 CFR 503.13) (monthly average)	Ceiling Concentrations* (Table 1, 40 CFR 503.13) (daily maximum)
Arsenic	4 mg/kg	41 mg/kg	75 mg/kg
Cadmium	3.2 mg/kg	39 mg/kg	85 mg/kg
Chromium	25 mg/kg	No Limit	No Limit
Copper	382 mg/kg	1500 mg/kg	4300 mg/kg
Lead	15 mg/kg	300 mg/kg	840 mg/kg
Mercury	1.4 mg/kg	17 mg/kg	57 mg/kg
Molybdenum	12 mg/kg	N/A**	75 mg/kg
Nickel	28 mg/kg	420 mg/kg	420 mg/kg
Selenium	11 mg/kg	100 mg/kg	100 mg/kg
Zinc	794 mg/kg	2800 mg/kg	7500 mg/kg
Nitrogen Concentration	Not Tested	N/A	N/A

^{*} Biosolids may not be land applied if any pollutant exceeds these values.

imprisonment for knowing violations.

B.	Pathogen Reduction	n (40 CFR 503.32) Please	indicate the level achieve	d	
	☐ Class A	🛛 Class B - 4	O CFR 503.32 (b) (2) Alternative 1.	
C.	Vector Attraction R	Reduction (40 CFR 503.33)	Please indicate the optio	n performed	
	⊠ Option I	☐ Option 2	☐ Option 3	☐ Option 4	
	☐ Option 5	☐ Option 6	☐ Option 7	□ Option 8	
	□ No vector attrac	ction reduction options were	performed		
D.	CERTIFICATION				
	accordance with a submitted. Based of	system designed to assure th on my inquiry of the person	at qualified personnel prop or persons who manage th	e prepared under my direction or su perly gather and evaluate the inform e system or these persons directly r pwledge and belief, true, accurate, a	nation esponsible for

A. Name and Official Title (type or print) Guss Pennell, Environmental Regulatory Compliance Officer	B. Area Code and Telephone Number 760-966-8795 & 760-966-4874 (FAX)
C. Signature Jun Would (I	D. Date Signed May 6, 1999

am aware that there are significant penalties for submitting false information, including the possibility of fine and

^{**} EPA has temporarily removed molybdenum limits from Table 3, Table2 and Table 4.

WATER UTILITIES DEPARTMENT LABORATORY

LABORATORY REPORT

Sample:

sludge cake -- total solids = 16.0 %

Identification:

San Luis Rey WWTP; 12 discrete samples composited in lab

Sample ID:

AA14009

Samples received:

20-Jan-99

Analysis performed by: City of Oceanside, Water Utilities Department Laboratory

Date reported:

26-Mar-99

			Limits - 4	0 CFR 503
		Results	Pollutant	Ceiling
		(mg/kg)	concentrations	concentrations
Analyte	Method	dry weight	(monthly ave)	(daily max)
Arsenic	6010	. 4	41 mg/kg	75 mg/kg
Cadmium	6010	3.25	39 mg/kg	85 mg/kg
Chromium	6010	25.4	no limit	no limit
Copper	6010	385	1500 mg/kg	4300 mg/kg
Lead	6010	15.5	300 mg/kg	840 mg/kg
Mercury	7471	1.55	17 mg/kg	57 mg/kg
Molybdenum	6010	14	N/A	75 mg/kg
Nickel	6010	29.4	420 mg/kg	420 mg/kg
Selenium	6010	10.8	100 mg/kg	100 mg/kg
Zinc	6010	816	2800 mg/kg	7500 mg/kg

Methods: EPA SW846, <u>Test Methods for Evaluating Solid Wastes</u>, Third edition.

WATER UTILITIES DEPARTMENT LABORATORY, by:

Mary Jongalia Mary Gonzales

Laboratory Supervisor

WATER UTILITIES DEPARTMENT LABORATORY

LABORATORY REPORT

Sample:

sludge cake -- total solids = 15.9 %

Identification:

San Luis Rey WWTP; 12 discrete samples composited in lab

Sample ID:

AA14560

Samples received: 03-Feb-99

Analysis performed by: City of Oceanside, Water Utilities Department Laboratory

Date reported:

26-Mar-99

		T	Limits - 40	CFR 503
		Results	Pollutant	Ceiling
		(mg/kg)	concentrations	concentrations
Analyte	Method	dry weight	(monthly ave)	(daily max)
Arsenic	6010	. 4	41 mg/kg	75 mg/kg
Cadmium	6010	3.20	39 mg/kg	85 mg/kg
Chromium	6010	24.1	no limit	no limit
Copper	6010	378	1500 mg/kg	4300 mg/kg
Lead	6010	14.0	300 mg/kg	840 mg/kg
Mercury	7471	1.23	17 mg/kg	57 mg/kg
Molybdenum	6010	10	N/A	75 mg/kg
Nickel	6010	27.6	420 mg/kg	420 mg/kg
Selenium	6010	10.9	100 mg/kg	100 mg/kg
Zinc	6010	772	2800 mg/kg	7500 mg/kg

Methods: EPA SW846, <u>Test Methods for Evaluating Solid Wastes</u>, Third edition.

WATER UTILITIES DEPARTMENT LABORATORY, by:

Mary Gonzales Laboratory Supervisor

3950 NORTH RIVER ROAD

OCEANSIDE, CA 92054

TELEPHONE 760-966-8772

FAX 760-966-8770

WATER UTILITIES DEPARTMENT LABORATORY

TREATED SEWAGE SLUDGE MONITORING Jan-Feb 1999

Type of monitoring: Bacteriological Sampling frequency: bimonthly

Requirement for class B alternative I: Density of fecal coliform from seven samples of treated sewage sludge must not exceed 2 million per gram of sewage sludge solids.

		# fecal coliform		# fecal coliform		date	time	
Sample location	Sample	per 100 ml	% TS	per gm TS	log	sampled	sampled	dig#
San Luis Rey	1	300,000	15.7	19,108	4.2812	06-Jan-99	1000-1400	1
press cake	2	220,000	16.8	13,095	4.1171	13-Jan-99	0930-1330	1
	3	80,000	16.0	5,000	3.6990	20-Jan-99	0930-1330	1
	4	140,000	15.0	9,333	3.9700	27-Jan-99	1000-1400	1
	5	300,000	15.9	18,868	4.2757	03-Feb-99	0930-1330	1
	6	1,700,000	16.1	105,590	5.0236	10-Feb-99	930	1
	7	300,000	15.8	18,987	4.2785	17-Feb-99	700	1

log mean = 4.2350 geometric mean = antilog = (4.2350) 17,179

meets class B alternative I standards: Yes

Method: Standard Methods for the Examination of Water and Wastewater, 18th edition. fecal coliform - direct test by most porbable number (MPN), 9221 E.2. % TS - 2540 B.

WATER UTILITIES DEPARTMENT LABORATORY, by:

Mary Gonzales

Laboratory Supervisor

SAN LUIS REY WASTEWATER TREATMENT PLANT - JANUARY 1999

REQUIREMENTS FOR VECTOR ATTRACTION REDUCTION - 503.33 (b) (1) - OPTION 1 REDUCTION IN VOLATILE SOLIDS CONTENT - AT LEAST 38% REDUCTION REQUIRED

MONT	RA	W SLU	DGE	DAF	SLUD	GE	DIGESTER	PRESS	VOL. SOLIDS
	%TS	%VS	FLOW	%TS	%VS	FLOW	FEED %VS	FEED %VS	REDUCTION
1				4.40	77.7	24800	77.7		
2									
4	4.46	80.9	38803	4.26	77.1	21900	79.6	65.4	51.5
5	3.71	83.2	40908	3.60	77.8	26000	81.1	68.8	48.7
6	3.74	79.5	40010	4.17	76.6	22700	78.4	65.4	47.9
7	2.81	81.0	37236	4.03	74.6	26100	77.8	67.7	40.2
8									
9									
10		•		•					
11	3.42	79.2	37140	4.77	75.7	20000	77.7	67.8	39.6
12	3.85	80.9	38981	5.13	78.7	22000	0.08	70.8	39.2
13	3.94	80.9	41238	3.91	80.2	22000	80.7	67.9	49.3
14	3.48	78.4	36108	3.78	79.0	9400	78.5	8.08	-15.0
15									
16									
17									
18	4.34	78.2	36648	4.80	77.8	25700	78.0	68.4	39.0
19	4.43	79.1	39929	5.22	80.0	21500	79.4	72.4	32.1
20	3.27	79.9	38689	4.77	78.4	25500	79.2	68.3	43.3
21	3.52	78.7	38952	5.10	77.6	25100	78.2	69.2	37.3
22									
23									
24									
25	3.49	80.5	39345	5.16	79.2	23900	79.9	68.3	45.7
26	2.29	79.2	38601	5.06	78.5	28500	78.8		
27	3.51	79.4	39430	5.19	76.0	26600	77.7	67.8	39.6
28	4.14	79.4	38640	4.34	78.5	27800	79.0	67.4	45.1
29				•					
30									
31									
AVG	3.65	79.9	38791	4.57	77.8	23500	78.9	69.1	40.3

SAN LUIS REY WASTEWATER TREATMENT PLANT - FEBRUARY 1999

REQUIREMENTS FOR VECTOR ATTRACTION REDUCTION - 503.33 (b) (1) - OPTION 1 REDUCTION IN VOLATILE SOLIDS CONTENT - AT LEAST 38% REDUCTION REQUIRED

MONT		W SLUI %VS	OGE FLOW	DAF %TS	SLUD	GE FLOW	DIGESTER FEED %VS	PRESS FEED %VS	VOL. SOLIDS REDUCTION
	%TS			4.83		29600	78.7	69.5	38.5
1	3.89	80.0	39272	4.65	77.4 77.7	24200	76.7 77.9	65.6	46.0
2	3.66	78.1 80.2	39095	5.05	76.9	28000	77. 5 78.5	67.7	42.7
3	3.56	80.2	39176	4.64	76.9 76.3	27700	78.3	63.5	51.9
4	3.99	80.0	39162	4.04	10.3	21100	70.3	03.5	31.9
5									
6									
7	4.07	00.0	20404	4.00	70.0	23900	77.0	66.7	40.0
8	4.37	80.2	39464	4.92	72.2 75.4	31600	77.0 77.4	66.7	41.4
9	4.41	79.0	38882	4.51 3.65	75.4 75.0	24400	77. 4 79.8	70.2	40.3
10	4.56	82.2	38933			27800	79.8 78.8	66.6	46.4
11	4.29	80.5	39094	4.21	76.4	2/000	70.0	00.0	40.4
12									
13									
14	E 46	70.0	27902	4.60	76.4	28200	78.5	68.8	39.6
15	5.16	79.9	37892	4.60			76.5 80.2	67.2	49.3
16	4.11	81.6	39432	4.71	78.4	28000		68.2	43.8
17	3.26	79.3	39261	5.09	79.2	24800	79.3	68.1	45.1
18	3.72	81.2	39737	5.41	77.9	27300	79.6	00.1	45.1
19									
20									
21			00070	5.40	75.4	00000	70.5	60.4	38.7
22	4.32	81.2	36272	5.43	75.1	23000	78.5	69.1	
23	4.08	80.1	38998	4.86	76.6	25700	78.6	68.5	40.7
24	4.44	81.6	38992	4.92	75.8	25900	79.1	69.4	40.2
25	4.11	79.9	38072	4.35	75.0	23400	78.0		
26									
27									
28									
AVG	4.12	80.3	38858	4.74	76.4	26469	78.6	67.7	43.0

NOTICE AND NECESSARY INFORMATION (NANI)

This form is to assist compliance with the bulk sewage sludge (biosolids) notification requirements [503.12(f)]. Please note, however, that if the biosolids meet the exceptional quality criteria, then the notification requirements do not apply. This form can be used by preparers of biosolids to transmit information to land appliers and also by land appliers to transmit information to land owners or lease holders.

Facility and Biosolids Type: San Luis Rey WWTP Dewatered Digested Sludge

Monitoring Period: From 03/01/99 To 04/30/99

To be Completed by PREPARERS of Biosolids

A. Please provide pollutant concentrations

Name	Concentration (mg/kg) Dry Weight	Pollutant Concentrations (Table 3, 40 CFR 503.13) (monthly average)	Ceiling Concentrations* (Table 1, 40 CFR 503.13) (daily maximum)
Arsenic			
Cadmium	4 mg/kg	41 mg/kg	75 mg/kg
Chromium	3.9 mg/kg	39 mg/kg	85 mg/kg
	26 mg/kg	No Limit	No Limit
Copper	306 mg/kg	1500 mg/kg	4300 mg/kg
Lead	12 mg/kg	300 mg/kg	840 mg/kg
Mercury	1.3 mg/kg	17 mg/kg	57 mg/kg
Molybdenum	10 mg/kg	N/A**	75 mg/kg
Nickel	35 mg/kg	420 mg/kg	420 mg/kg
Selenium	9.5 mg/kg	100 mg/kg	100 mg/kg
Zinc	712 mg/kg	2800 mg/kg	7500 mg/kg
Nitrogen Concentration	Not Tested	N/A	N/A

^{*} Biosolids may not be land applied if any pollutant exceeds these values.

B.	Pathogen Reduction	1 (40 CFR 503.32) Please	indicate the level achieve	d
	□ Class A		O CFR 503.32 (b) (
C.	Vector Attraction R	eduction (40 CFR 503.33) -	Please indicate the optio	n performed
	🔀 Option I	☐ Option 2	☐ Option 3	☐ Option 4
	☐ Option 5	☐ Option 6	□ Option 7	□ Option 8
	☐ No vector attrac	tion reduction options were	performed	

D. CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or these persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

A. Name and Official Title (type or print) Guss Pennell, Environmental Regulatory Compliance Officer	B. Area Code and Telephone Number 760-966-8795 & 760-966-4874 (FAX)
C. Signature Hum Mennell	D. Date Signed May 10, 1999

^{**} EPA has temporarily removed molybdenum limits from Table 3, Table2 and Table 4.

WATER UTILITIES DEPARTMENT LABORATORY

LABORATORY REPORT

Sample:

sludge cake -- total solids = 16.5 %

Identification:

San Luis Rey WWTP; 12 discrete samples composited in lab

Sample ID:

AA16349

Samples received: 22-Mar-99

Analysis performed by: City of Oceanside, Water Utilities Department Laboratory

Date reported:

10-May-99

·			Limits - 40 CFR 503			
		Results	Pollutant	Ceiling		
		(mg/kg)	concentrations	concentrations		
Analyte	Method	dry weight	(monthly ave)	(daily max)		
Arsenic	6010	4	41 mg/kg	75 mg/kg		
Cadmium	6010	3.53	39 mg/kg	85 mg/kg		
Chromium	6010	25.4	no limit	no limit		
Copper	6010	299	1500 mg/kg	4300 mg/kg		
Lead	6010	14	300 mg/kg	840 mg/kg		
Mercury	7471	1.2	17 mg/kg	57 mg/kg		
Molybdenum	6010	10	N/A	75 mg/kg		
Nickel	6010	30.8	420 mg/kg	420 mg/kg		
Selenium	6010	9.21	100 mg/kg	100 mg/kg		
Zinc	6010	694	2800 mg/kg	7500 mg/kg		

Methods: EPA SW846, <u>Test Methods for Evaluating Solid Wastes</u>, Third edition.

WATER UTILITIES DEPARTMENT LABORATORY, by:

Mary Gonzales

Laboratory Supervisor

WATER UTILITIES DEPARTMENT LABORATORY

LABORATORY REPORT

Sample:

sludge cake -- total solids = 14.6 %

Identification:

San Luis Rey WWTP; 12 discrete samples composited in lab

Sample ID:

AA16928

Samples received: 05-Apr-99

Analysis performed by: City of Oceanside, Water Utilities Department Laboratory

Date reported:

10-May-99

			Limits - 40 (
		Results	Pollutant	Ceiling
		(mg/kg)	concentrations	concentrations
Analyte	Method	dry weight	(monthly ave)	(daily max)
Arsenic	6010	4	41 mg/kg	75 mg/kg
Cadmium	6010	4.27	39 mg/kg	85 mg/kg
Chromium	6010	27.1	no limit	no limit
Copper	6010	312	1500 mg/kg	4300 mg/kg
Lead	6010	10	300 mg/kg	840 mg/kg
Mercury	7471	1.3	17 mg/kg	57 mg/kg
Molybdenum	6010	10	N/A	75 mg/kg
Nickel	6010	39.2	420 mg/kg	420 mg/kg
Selenium	6010	9.76	100 mg/kg	100 mg/kg
Zinc	6010	729	2800 mg/kg	7500 mg/kg

Methods: EPA SW846, Test Methods for Evaluating Solid Wastes, Third edition.

WATER UTILITIES DEPARTMENT LABORATORY, by:

Mary Gonzales

3950 NORTH RIVER ROAD

Laboratory Supervisor

OCEANSIDE, CA 92054

TELEPHONE 760-966-8772

FAX 760-966-8770

WATER UTILITIES DEPARTMENT LABORATORY

TREATED SEWAGE SLUDGE MONITORING March-April 1999

Type of monitoring: Bacteriological Sampling frequency: bimonthly

Requirement for class B alternative I: Density of fecal coliform from seven samples of treated sewage sludge must not exceed 2 million per gram of sewage sludge solids.

		# fecal coliform		# fecal coliform		date	time	
Sample location	Sample	per 100 ml	% TS	per gm TS	log	sampled	sampled	dig#
San Luis Rey	1	300,000	15.9	18,868	4.2757	03-Mar-99	7:00	1
press cake	2	2,400,000	17.2	139,535	5.1447	10-Mar-99	10:30	1
•	3	170,000	15.2	11,184	4.0486	17 - Mar-99	13:15	1
	4	2,800,000	15.1	185,430	5.2682	24-Mar-99	9:30	1
	5	1,100,000	17.4	63,218	4.8008	31-Mar-99	8:40	. 1
	6	300,000	14.3	20,979	4.3218	06-Apr-99	8:40	1
	7	500,000	14.3	34,965	4.5436	14-Apr-99	9:20	1
		·						

log mean = 4.6291 **geometric mean =** antilog = (4.6291) 42,570

meets class B alternative I standards: Yes

Method: Standard Methods for the Examination of Water and Wastewater, 18th edition.

fecal coliform - direct test by most porbable number (MPN), 9221 E.2.

% TS - 2540 B.

WATER UTILITIES DEPARTMENT LABORATORY, by:

Mary Gonzales

Laboratory Supervisor

SAN LUIS REY WASTEWATER TREATMENT PLANT - MARCH 1999

REQUIREMENTS FOR VECTOR ATTRACTION REDUCTION - 503.33 (b) (1) - OPTION 1 REDUCTION IN VOLATILE SOLIDS CONTENT - AT LEAST 38% REDUCTION REQUIRED

MONT		W SLUI			SLUD		DIGESTER	PRESS	VOL. SOLIDS
	%TS	%VS	FLOW	%TS	%VS	FLOW	FEED %VS	FEED %VS	REDUCTION
1	5.10	80.6	36650	4.66	74.9	23100	78.5	69.5	37.7
2	3.38	82.0	39658	4.48	74.9	25800	78.7	68.6	40.9
3	4.64	80.2	39008	4.19	75.6	28700	78.4	65.1	48.5
4	5.73	81.1	38973	4.67	75.3	26100	79.1	67.4	45.2
5									
6									
7									
8	4.89	80.7	38135	3.77	71.3	24700	77.6	67.0	41.3
9	5.28	79.9	34051	4.07	72.4	28200	77.0		
10	2.71	. 80.6	29234	3.60	74.3	25200	77.2	65.9	43.0
11	2.68	80.9	28146	4.25	72.3	25500	75.8		
12									
13									
14									
15	3.71	81.2	37593	3.93	69.7	24700	76.5		
16	4.74	80.9	39696	3.64	74.2	27300	78.6	68.0	42.1
17	4.17	81.4	38954	4.39	74.2	27700	78.3	67.2	43.3
18	4.50	81.1	38572	4.08	71.1	26300	77.3	67.5	38.9
19									
20									
21									
22	4.83	82.1	37787	4.11	73.9	21800	79.4	67.1	47.1
23	5.55	80.1	32539	4.22	73.0	26200	77.4	70.5	30.2
24	5.02	80.1	36830	2.52	74.1	28000	78.4	65.3	48.3
25	4.92	81.0	39437	4.28	73.0	27500	78.0	69.0	37.1
26								•	
27									
28									
29	5.23	81.0	39072	4.52	70.9	24700	77.4	67.0	40.8
30	5.04	80.1	36882	4.78	71.1	26400	76.5	67.4	36.4
31	•			.,, •					
AVG	4.56	8.08	36734	4.12	73.1	25994	77.8	67.5	40.7

SAN LUIS REY WASTEWATER TREATMENT PLANT - APRIL 1999

REQUIREMENTS FOR VECTOR ATTRACTION REDUCTION - 503.33 (b) (1) - OPTION 1 REDUCTION IN VOLATILE SOLIDS CONTENT - AT LEAST 38% REDUCTION REQUIRED

MONT	RA'	W SLUI	DGE	DAF	SLUD	GE	DIGESTER	PRESS	VOL. SOLIDS
	%TS	%VS	FLOW	%TS	%VS	FLOW	FEED %VS	FEED %VS	REDUCTION
1	5.03	80.0	39150	4.53	71.1	24200	76.8	67.2	38.2
2									
3							·		
4									
5	4.24	79.8	40469	3.59	73.1	25100	77.5	67.2	40.5
6	4.42	78.9	38586	3.92	72.1	29500	76.2	64.6	42.9
7	4.80	80.9	24425	3.92	72.1	26000	76.8	67.2	38.1
8	5.07	81.5	34977	3.59	76.1	28000	79.5	69.1	42.5
9									
10									
11									
12	4.56	0.08	21662	3.85	74.5	28000	77.1	66.7	40.6
13	4.13	80.3	9898	3.80	76.3	26200	77.5	68.3	37.3
14	4.32	80.0	8268	3.79	76.8	27800	77.6	67.7	39.5
15	4.30	79.8	5128	3.51	75.8	26900	76.6	67.1	37.5
16									
17									
18									
19	4.65	78.9	39073	4.04	76.0	26700	77.8	67.5	40.8
20	4.36	79.8	38914	4.01	76.4	27700	78.5	69.4	37.7
21	5.24	79.1	47769	3.75	78.3	25700	78.9	67.4	44.6
22	5.17	80.8	29861	4.11	74.5	28000	78.1	66.2	45.1
23									
24									
25									
26	4.99	79.5	30116	4.06	74.8	27400	77.5	68.9	35.7
27	5.65	79.4	30076	4.00	74.4	25400	77.5	67.6	39.5
28	4.72	82.2	48850	4.86	72.3	24600	78.8	67.2	44.9
29	5.31	78.9	36460	4.58	71.8	26000	76.2	66.3	38.5
30	•								
35									
AVG	4.76	80.0	30805	3.99	74.5	26659	77.6	67.4	40.3

AVERAGE % VOLATILE SOLIDS REDUCTION FOR MARCH AND APRIL

NOTICE AND NECESSARY INFORMATION (NANI)

This form is to assist compliance with the bulk sewage sludge (biosolids) notification requirements [503.12(f)]. Please note, however, that if the biosolids meet the exceptional quality criteria, then the notification requirements do not apply. This form can be used by preparers of biosolids to transmit information to land appliers and also by land appliers to transmit information to land owners or lease holders.

Facility and Biosolids Type: San Luis Rey WWTP Dewatered Digested Sludge

Monitoring Period: From <u>05 / 01 / 99</u> To <u>06 / 30 / 99</u>

To be Completed by PREPARERS of Biosolids

A. Please provide pollutant concentrations

Name	Concentration (mg/kg) Dry Weight	Pollutant Concentrations (Table 3, 40 CFR 503.13) (monthly average)	Ceiling Concentrations* (Table 1, 40 CFR 503.13) (daily maximum)
Arsenic	5.8 mg/kg	41 mg/kg	75 mg/kg
Cadmium	6.0 mg/kg	39 mg/kg	85 mg/kg
Chromium	56 mg/kg	No Limit	No Limit
Copper	297 mg/kg	1500 mg/kg	4300 mg/kg
Lead	20 mg/kg	300 mg/kg	840 mg/kg
Mercury	2.4 mg/kg	17 mg/kg	57 mg/kg
Molybdenum	15 mg/kg	N/A**	75 mg/kg
Nickel	55 mg/kg	, 420 mg/kg	420 mg/kg
Selenium	11 mg/kg	, 100 mg/kg	100 mg/kg
Zinc	744 mg/kg	2800 mg/kg	7500 mg/kg
Nitrogen Concentration	Not Tested	N/A	N/A

^{*} Biosolids may not be land applied if any pollutant exceeds these values.

imprisonment for knowing violations.

B.	Pathogen Reduction (40) CFR 503.32) Plea	se indicate the level achieved	d	
	□ Class A		40 CFR 503.32 (b) (
C.	Vector Attraction Reduc	ction (40 CFR 503.33) Please indicate the optio	n performed Option l requiremen	t of at
	⊠ Option I	☐ Option 2	□ Option 3	Option 4 least 38% reduce	ction
	☐ Option 5	☐ Option 6	☐ Option 7	was not achieve \square Option 8 The two month a	
	☐ No vector attraction	reduction options we	re performed	May 36.4% - Ju was 37%.	
D.	CERTIFICATION				
	accordance with a system submitted. Based on my gathering information, t	m designed to assure y inquiry of the perso the information submi	that qualified personnel prop n or persons who manage th itted is, to the best of my kno	e prepared under my direction or supervision perly gather and evaluate the information e system or these persons directly responsional powledge and belief, true, accurate, and comition, including the possibility of fine and	ble for

A. Name and Official Title (type or print) Guss Pennell, Environmental Regulatory Compliance Officer	B. Area Code and Telephone Number 760-966-8795 & 760-966-4874 (FAX)			
C. Signature Jan Wannell	D. Date Signed January 14, 2000			

^{**} EPA has temporarily removed molybdenum limits from Table 3, Table2 and Table 4.

WATER UTILITIES DEPARTMENT LABORATORY

LABORATORY REPORT

Sample:

sludge cake -- total solids = 15.7 %

Identification:

San Luis Rey WWTP; sample taken from the belt press

Sample ID:

Associated Labs # LR37557

Samples received: 17-May-99

Analysis performed by: Associated Laboratories; Orange, CA

Date reported:

18-Aug-99

			Limits - 4	0 CFR 503
		Results	Pollutant	Ceiling
		(mg/kg)	concentrations	concentrations
Analyte	Method	dry weight	(monthly ave)	(daily max)
Arsenic	7060	, ND	41 mg/kg	75 mg/kg
Cadmium	6010	4.8	39 mg/kg	85 mg/kg
Chromium	6010	38.3	no limit	no limit
Copper	6010	273	1500 mg/kg	4300 mg/kg
Lead	7420	ND	300 mg/kg	840 mg/kg
Mercury	245.5	2.4	17 mg/kg	57 mg/kg
Molybdenum	6010	11.1	N/A	75 mg/kg
Nickel	6010	46.9	420 mg/kg	420 mg/kg
Selenium	7740	ND	100 mg/kg	100 mg/kg
Zinc	6010	707	2800 mg/kg	7500 mg/kg

Methods: EPA SW846, <u>Test Methods for Evaluating Solid Wastes</u>, Third edition.

WATER UTILITIES DEPARTMENT LABORATORY, by:

Mary Gonzales Laboratory Supervisor

3950 NORTH RIVER ROAD

OCEANSIDE, CA 92054

TELEPHONE 760-966-8772

FAX 760-966-8770

OF OCEANSIDE

WATER UTILITIES DEPARTMENT LABORATORY

LABORATORY REPORT

Sample:

sludge cake -- total solids = 15.1 %

Identification:

San Luis Rey WWTP; sample taken from the belt press

Sample ID:

Associated Labs # LR39047

Date sampled:

10-Jun-99

Analysis performed by: Associated Laboratories; Orange, CA

Date reported:

20-Aug-99

Date reported.	207.03 22	Limits - 40 CFR 503			
		Results	Pollutant	Ceiling	
		(mg/kg)	concentrations	concentrations	
Analyte	Method	dry weight	(monthly ave)	(daily max)	
Arsenic	7060	5.8	41 mg/kg	75 mg/kg	
Cadmium	6010	7.1	39 mg/kg	85 mg/kg	
Chromium	6010	73.5	no limit	no limit	
Copper	6010	321	1500 mg/kg	4300 mg/kg	
Lead	7420	20	300 mg/kg	840 mg/kg	
Mercury	245.5	LA	17 mg/kg	57 mg/kg	
Molybdenum	6010	19.7	N/A	75 mg/kg	
Nickel	6010	64.0	420 mg/kg	420 mg/kg	
Selenium	7740	11	100 mg/kg	100 mg/kg	
Zinc	6010	781	2800 mg/kg	7500 mg/kg	

LA = lab accident, no data for this parameter

Methods: EPA SW846, Test Methods for Evaluating Solid Wastes, Third edition.

WATER UTILITIES DEPARTMENT LABORATORY, by:

Mary Jongalio Mary Gonzales

Laboratory Supervisor

Order #: 123299

Matrix: SOLID
Date Sampled:
Time Sampled:
Sampled By:

Client: City of Oceanside

Client Sample ID: SLR Sludge - Comp

Analyte	Result	DF	DLR	Units	Date/A	nalyst
245.5 Mercury in Solids by Manual Cold Vapor						
Mercury	0.38	1	0.12	mg/Kg	6/ 1/99	MD
335.2 Total Cyanide						
				~		
Cyanide	ND	. 1	0.5	mg/Kg	5/24/99	JA
6010B ICP Metals - Solid/Liquid						
Antimony	2.41	1	1.44	mg/Kg	5/27/99	MT
Beryllium	l NDI	1	0.10	mg/Kg	5/27/99	MT
Cadmium	0.757	1	0.20	mg/Kg	5/27/99	MT
Chromium	6.01	1	0.59	mg/Kg	5/27/99	MT
Copper	42.8	ı	0.22	mg/Kg	5/27/99	MT
Molybdenum	1.75	1	0.65	mg/Kg	5/27/99	MT
Nickel	7.37	1	0.68	mg/Kg	5/27/99	MT
Silver	3.56	1	0.50	mg/Kg	5/27/99	MT
Zinc	111	1	0.34	mg/Kg	5/27/99	MT
7060A Arsenic by Graphite Furnace						
Arsenic	ND	10	10.0	mg/Kg	5/27/99	MT
7420 Lead AA, Direct Aspiration						
Lead	ND	1	10	mg/Kg	5/27/99	MT
7740 Selenium by Graphite Furnace						
Selenium	ND	1	1.0	mg/Kg	5/27/99	MT
7841 Thallium by Graphite Furnace						
Thallium	l NDI	10	10.0	mg/Kg	5/27/99	ND
			.			

8081A - Organochlorine Pesticides by GC

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

Order #: [Matrix: SOLID

Date Sampled: 6/10/99 Time Sampled: 13:40

Sampled By:

Client: City of Occanside

Client Sample ID: SLR Belt Press Cake

32 48.5 1 0.22 mg/Kg 6/29/99 Mickel 30.3 3.07 1 0.25 mg/Kg 6/29/99 Mickel 48.5 1 0.25 mg/Kg 6/29/99 Mickel 49.0 9.67 1 0.65 mg/Kg 6/29/99 Mickel 49.0 9.67 1 0.68 mg/Kg 6/29/99 Mickel 49.0 1.66 1 0.37 mg/Kg 6/29/99 Mickel 48.5 1 0.22 mg/Kg 6/29/99 Mickel 48.5 1 0.25 mg/Kg 6/29/99 Mickel 48.5 mg/Kg 6/29/99 Mi	Result	DF	DLR	Units	Date/A	nalyst
5. 8 1	0,8781	1	0.20	mo/Ka	6/29/99	MD
<u>,</u>	,	1				
· 1	1	1				
· ·	,	1				MT
		1				MT
- 1	1	1	0.25	mg/Kg	6/29/09	MD
19.7	2.97	1	0.65	mg/Kg	6/29/99	MT
64.01	9.67	1	0.68	mg/Kg	6/29/99	MT
	1.66	1	0.37		6/29/99	MD
781	118	1	0.34			MT
-	7.1 73.5 321 20.3 19.7 64.0	5.8 0.878 7.1 1.07 73.5 11.1 32.1 48.5 20.3 3.07 19.7 2.97 64.0 9.67 11.0 1.66	5.8 0.878 1 7.1 1.07 1 73.5 11.1 1 32 48.5 1 20.3 3.07 1 19.7 2.97 1 64.0 9.67 1 11.0 1.66 1	5.8 0.878 1 0.20 7.1 1.07 1 0.20 73.5 11.1 1 0.59 32 48.5 1 0.22 20.3 3.07 1 0.25 19.7 2.97 1 0.65 64.0 9.67 1 0.68 11.0 1.66 1 0.37	5.8 0.878 1 0.20 mg/Kg 7.1 1.07 1 0.20 mg/Kg 73.5 11.1 1 0.59 mg/Kg 32 48.5 1 0.22 mg/Kg 20.3 3.07 1 0.25 mg/Kg 19.7 2.97 1 0.65 mg/Kg 64.0 9.67 1 0.68 mg/Kg 11.0 1.66 1 0.37 mg/Kg	5.8 0.878 1 0.20 mg/Kg 6/29/99 7.1 1.07 1 0.20 mg/Kg 6/30/99 73.5 11.1 1 0.59 mg/Kg 6/29/99 32 48.5 1 0.22 mg/Kg 6/29/99 20.3 3.07 1 0.25 mg/Kg 6/29/99 19.7 2.97 1 0.65 mg/Kg 6/29/99 64.0 9.67 1 0.68 mg/Kg 6/29/99 11.0 1.66 1 0.37 mg/Kg 6/29/99

DLR = Detection limit for reporting purposes. ND = Not Detected below indicated detection limit, DF = Dilution Factor

WATER UTILITIES DEPARTMENT LABORATORY

TREATED SEWAGE SLUDGE MONITORING May - June 1999

Type of monitoring: Bacteriological Sampling frequency: bimonthly

Requirement for class B alternative I: Density of fecal coliform from seven samples of treated sewage sludge must not exceed 2 million per gram of sewage sludge solids.

		# fecal coliform		# fecal coliform		date	time	
Sample location	Sample	per 100 ml	% TS	per gm TS	log	sampled	sampled	dig#
San Luis Rey	1	30,000	14.5	2,069	3.3158	05-May-99	10:45	1
press cake	2	1,600,000	18.2	87,912	4.9440	12-May-99	9:30	1
•	3	13,000	16.1	807	2.9071	19-May-99	10:30	1
	4	5,000	15.3	327	2.5143	02-Jun-99	12:00	1
	5	8,000	15.1	530	2.7241	10-Jun-99	13:40	1
	6	50,000	15.4	3,247	3.5114	17-Jun-99	9:45	1
	7	300,000	15.3	19,608	4.2924	23-Jun-99	8:45	1

log mean = 3.4585 geometric mean = antilog =(3.4585) 2,874

meets class B alternative I standards: Yes

Method: Standard Methods for the Examination of Water and Wastewater, 18th edition.

fecal coliform - direct test by most porbable number (MPN), 9221 E.2.

% TS - 2540 B.

WATER UTILITIES DEPARTMENT LABORATORY, by:

Thang Gonzales

Mary Gonzales

Laboratory Supervisor

SAN LUIS REY WASTEWATER TREATMENT PLANT - MAY 1999

REQUIREMENTS FOR VECTOR ATTRACTION REDUCTION - 503.33 (b) (1) - OPTION 1 REDUCTION IN VOLATILE SOLIDS CONTENT - AT LEAST 38% REDUCTION REQUIRED

MONT		W SLUI			SLUD		DIGESTER	PRESS	VOL. SOLIDS
	%TS	%VS	FLOW	%TS	%VS	FLOW	FEED %VS	FEED %VS	REDUCTION
1									
2 3	4.70	70 E	40040	274	74.0	2000	77 7	68.6	27.0
	4.70	79.5	40818	3.74	74.2	26600	77.7	68.6	37.3
4	4.33	79.0	38586	3.50	73.3	27600	76.9	69.9	30.3
5	3.57	78.7	40000	2.76	73.2	27000	76.8	67.4	37.6
6	3.22	78.9	38045	4.40	70.7	27000	74.9	65.8	35.4
7									
8									
9	2.02	70.0	27022	4 70	74.6	20000	75.0	60.7	26.0
10	2.02	78.2	37082	4.72	74.6	29800	75.9	69.7	26.8
11 12	3.34 3.41	81.4 82.3	43487	4.00 5.87	73.7 73.4	26700	78.1	68.9	38.0 36.2
12	3.41	02.3	40706			32400	77.2	68.3 67.0	1
13				4.54	73.1	33000	73.1	67.0	25.3
15									
16					,				
17	4.49	79.0	35043	4.05	72.9	32700	76.2	67.1	36.3
18	4.09	81.1	41510	4.05	76.2	26800	70.2 79.1	66.2	48.4
19	3.92	80.0	41104	4.24 5.18	73.9	28700	79.1 77.1	67.0	39.6
20	2.94	80.0	35442	3.32	73. 9 72.4	33000	77.1 76.1	66.3	38.2
21	2.34	00.0	33442	3.32	12.4	33000	70.1	00.3	30.2
22									
23									
23 24	4.08	78.9	39706	4.23	72.4	30800	76.0	67.4	34.7
2 4 25	3.79	80.1	40066	4.23 4.48	72.4	32900	76.0 76.3	67. 4 67.7	34.7
25 26	4.08	77.3	38325	5.04	74.0	32900	76.3 75.6	67.7	34.5
20 27	4.42	80.7	48048	4.14	74.0 74.5	33100	78.3	65.9	46.3
2 <i>1</i> 28	4.42	00.7	40040	4.14	74.5	33100	10.3	05.8	40.5
20 29									
30									
31	2.76	70.7	20065	4.00	70.4	20062	76.6	67.5	26.4
AVG	3.76	79.7	39865	4.26	73.4	30063	76.6	67.5	36.4

SAN LUIS REY WASTEWATER TREATMENT PLANT - JUNE 1999

REQUIREMENTS FOR VECTOR ATTRACTION REDUCTION - 503.33 (b) (1) - OPTION 1 REDUCTION IN VOLATILE SOLIDS CONTENT - AT LEAST 38% REDUCTION REQUIRED

MONT		w slu			SLUD		DIGESTER	PRESS	VOL. SOLIDS
	%TS	%VS	FLOW	%TS	%VS	FLOW	FEED %VS	FEED %VS	REDUCTION
1	5.58	82.2	16581	3.92	73.6	33000	77.2	66.7	40.8
2	4.64	80.3	9095	5.39	73.2	34200	74.5	66.1	33.5
3	5.40	80.5	19516	5.55	74.3	32700	76.6	68.9	32.3
4									
5									
6									
7	6.07	80.9	39401	4.71	74.9	33700	78.5	65.9	47.0
8	5.34	80.1	34381	5.12	74.9	32500	77.6	67.8	39.3
9	4.61	80.9	33432	4.77	75.9	33000	78.3	65.9	46.6
10	1.98	79.4	41274	6.21	74.3	33100	75.7	67.1	34.7
11									
12									
13									
14	5.15	79.7	24957	5.13	72.3	33000	75.5	70.7	21.8
15	5.56	80.2	8113	4.77	75.2	33000	76.3	66.4	38.7
16	5.00	80.7	20831	5.59	72.9	33000	75.7	70.5	23.4
17	4.47	79.6	24298	4.07	74.3	33000	76.7	66.7	39.0
18									
19									
20									
21				4.00	73.7	33000	73.7	68.2	23.5
22									
23	5.00	78.7	22727	4.71	72.6	33000	75.2	65.3	37.9
24	4.44	79.2	13555	5.45	72.6	32400	74.3	66.2	32.2
25									
26									
27									
28									
29	5.29	79.1	28010				79.1	65.6	49.6
30	4.70	79.9	29100	4.11	74.7	30100	77.4	64.2	47.7
AVG	4.88	80.1	24351	4.90	74.0	32847	76.4	67.0	37.3

NOTICE AND NECESSARY INFORMATION (NANI)

This form is to assist compliance with the bulk sewage sludge (biosolids) notification requirements [503.12(f)]. Please note, however, that if the biosolids meet the exceptional quality criteria, then the notification requirements do not apply. This form can be used by preparers of biosolids to transmit information to land appliers and also by land appliers to transmit information to land owners or lease holders.

Facility and Biosolids Type: San Luis Rey WWTP Dewatered Digested Sludge Monitoring Period: From 07/01/99 To 08/31/99

To be Completed by PREPARERS of Biosolids

A. Please provide pollutant concentrations

27			
Name	Concentration	Pollutant Concentrations	Ceiling Concentrations*
	(mg/kg)	(Table 3, 40 CFR 503.13)	(Table 1, 40 CFR 503.13)
	Dry Weight	(monthly average)	(daily maximum)
Arsenic	6.1 mg/kg	41 mg/kg	75 mg/kg
Cadmium	2.3 mg/kg	39 mg/kg	85 mg/kg
Chromium	53 mg/kg	No Limit	No Limit
Copper	257 mg/kg	1500 mg/kg	4300 mg/kg
Lead	19 mg/kg	300 mg/kg	840 mg/kg
Mercury	1.6 mg/kg	17 mg/kg	57 mg/kg
Molybdenum	15 mg/kg	N/A**	75 mg/kg
Nickel	42 mg/kg	, 420 mg/kg	420 mg/kg
Selenium	8.2 mg/kg	′ 100 mg/kg	100 mg/kg
Zinc	637 mg/kg	2800 mg/kg	7500 mg/kg
Nitrogen Concentration	Not Tested	N/A	N/A

^{*} Biosolids may not be land applied if any pollutant exceeds these values.

Pathogen Reduction (40 CFR 503.32) -- Please indicate the level achieved

	□ Class A	☑ Class B - 4	O CFR 503.32 (b) (2) Alternative 1.
C	Vector Attraction F	Reduction (40 CFR 503.33)	Please indicate the optio	n performed
	🗷 Option I	☐ Option 2	☐ Option 3	☐ Option 4
	☐ Option 5	☐ Option 6	☐ Option 7	☐ Option 8
	☐ No vector attrac	ction reduction options were	performed	
Э.	CERTIFICATION	1. Cl. d. d. d.		

В.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or these persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

A. Name and Official Title (type or print) Guss Pennell, Environmental Regulatory Compliance Officer	B. Area Code and Telephone Number 760–966–8795 & 760–966–4874 (FAX)
C. Signature Jan Wanell	D. Date Signed January 14, 2000

^{**} EPA has temporarily removed molybdenum limits from Table 3, Table2 and Table 4.

Order #: 138099

Matrix: SOLID

Client: City of Oceanside

Client Sample ID: SLR Belt Press Cake

Date Sampled: 7/28/99 Time Sampled: 10:40

Sampled By:

Analyte Units Date/Analyst Result DF DLR 245.5 Mercury in Solids by Manual Cold Vapor Mercury 1.6 0.12 mg/Kg 8/24/99 MJ 6010B ICP Metals - Solid/Liquid Arsenic 6.05 0.20 mg/Kg 8/20/99 MT Cadmium 2.21 0.20 mg/Kg 8/20/99 MT Chromium 62.9] 0.59 mg/Kg 8/20/99 MTCopper 253.0 0.22 mg/Kg 8/20/99 MTLead 18.10 0.25 mg/Kg 8/20/99 MT Molybdenum 16.83 1 0.65 mg/Kg 8/20/99 MT Nickel 47.64 0.68 mg/Kg 8/20/99 MT Selenium 8.25 1 0.37 mg/Kg 8/20/99 MT Zinc 619.0 1 0.34 mg/Kg 8/20/99 MT

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

Order #: 138100

Matrix: SOLID

Client: City of Oceanside

Client Sample ID: SLR Belt Press Cake

Date Sampled: 8/16/99 Time Sampled: 09:40

Sampled By:

Analyte Units Date/Analyst Result DF DLR 245.5 Mercury in Solids by Manual Cold Vapor Mercury 1.64 1 0.12 mg/Kg 8/24/99 MJ 6010B ICP Metals - Solid/Liquid Arsenic 6.23 1 0.20 mg/Kg 8/20/99 MT Cadmium 2.33 1 0.20 mg/Kg 8/20/99 MT Chromium l 43.6 0.59 mg/Kg 8/20/99 MT Copper 1 260.0 0.22 mg/Kg 8/20/99 MT Lead 19.7 ĩ 0.25 mg/Kg 8/20/99 MT Molybdenum 13.4 1 0.65 mg/Kg 8/20/99 MT Nickel 1 35.5 0.68 mg/Kg 8/20/99 MTSelenium 8.11 I 0.37 mg/Kg 8/20/99 MT Zinc 654.0 l 0.34 mg/Kg 8/20/99 MT

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

4/399

City of Oceanside Water Utilities Department Laboratory San Luis Rey Wastewater Treatment Plant 3950 North River Road Oceanside, California 92054 phone: 760-966-8772

fax: 760-966-8770

To: Associated Laboratories

P.O. # 20005

Sample Description

Date: August 18, 1999

Analyze for:

a		Analyze all four samples for metals
Sludge samples		for "503" sludge regs:
SLR Belt Press Cake	28-Jul-99 @ 1040	As, Cd, Cr, Cu, Pb, Mo, Ni, Se, Zn
SLR Belt Press Cake	16-Aug-99 @ 0940	As, Cd, Cr, Cu, Pb, Mo, Ni, Se, Zn
LS Belt Press Cake	27-Jul-99 @ 0400	As, Cd, Cr, Cu, Pb, Mo, Ni, Se, Zn
LS Belt Press Cake	16-Aug-99 @ 0400	As, Cd, Cr, Cu, Pb, Mo, Ni, Se, Zn
		These answers need to be reported as mg/kg dry weight.
		as mg/kg dry weight.
Dalia aniahad kan	Dalin michad ba	
Relinquished by:	Relinquished by	/.
Mary Gamalia	8/19/94	
(Signature)	(Time) (Signature)	(Time
MARY GONZALES	1255	
(Printed name)	(Date) (Printed name)	(Date
Received by:	Received by As	sociated Laboratory
Richallon	1255 Farmer 2	14:45
(Signature)	(Time) (Signature)	(Time
KICHARD GIRREIN	8/19/99 (1999)	DEMPSEY 8-19-97
	(Date) (Printed name)	(Date

Date/Time Sampled

FAX 714/538-1209

CLIENT City of Oceanside

(3869)

LAB REQUEST 41399

ATTN: Mary Gonzales Water Utilities Department Lab

REPORTED 9/10/99

3950 North River Road

RECEIVED 8/19/99

Oceanside, CA 92054

PROJECT Sludge Samples

SUBMITTER Client

COMMENTS Results expressed on "Dry Weight Basis"

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

Order No.		Client Sample Identification
138099	,	SLR Belt Press Cake
138100	·	SLR Belt Press Cake
138101		LS Belt Press Cake
138102		LS Belt Press Cake

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORATORIES by.

Robert A. Webber Vice President

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 30 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental

WATER UTILITIES DEPARTMENT LABORATORY

TREATED SEWAGE SLUDGE MONITORING July - August 1999

Type of monitoring: Bacteriological Sampling frequency: bimonthly

Requirement for class B alternative I: Density of fecal coliform from seven samples of treated sewage sludge must not exceed 2 million per gram of sewage sludge solids.

		# fecal coliform		# fecal coliform		date	time	
Sample location	Sample	per 100 ml	% TS	per gm TS	log	sampled	sampled	dig ≠
<u> </u>								
San Luis Rey	1	50,000	14.1	3,546	3.5498	08-Jul-99	8:30	l
press cake	2	50,000	15.6	3,205	3.5058	14-Jul-99	8:05	1
press cake	3	24,000	15.1	1,589	3.2012	21-Jul-99	7:50	1
	4	24,000	14.7	1,633	3.2129	28-Jul-99	10:40	1
	4	80,000	14.9	5,369	3.7299	04-Aug-99	9:45	i
	3	24,000	15.2	1,579	3.1984	12-Aug-99	9:35	1
	6	•	15.1	112,583	5.0515	19-Aug-99	10:40	1
	/	1,700,000	13.1	112,505	3.0313	27 1126		

 $\begin{array}{ccc} & & & \log mean = & 3.6356 \\ \text{geometric mean} = & & \text{antilog} = (3.6356) & 4.321 \end{array}$

meets class B alternative I standards: Yes

Method: Standard Methods for the Examination of Water and Wastewater, 18th edition. fecal coliform - direct test by most porbable number (MPN), 9221 E.2.

% TS - 2540 B.

WATER UTILITIES DEPARTMENT LABORATORY, by:

Mary Gonzales

Laboratory Supervisor

SAN LUIS REY WASTEWATER TREATMENT PLANT - JULY 1999

REQUIREMENTS FOR VECTOR ATTRACTION REDUCTION - 503.33 (b) (1) - OPTION 1 REDUCTION IN VOLATILE SOLIDS CONTENT - AT LEAST 38% REDUCTION REQUIRED

MONT	RA	W SLU	DGE	DAF	SLUD	GE	DIGESTER	PRESS	VOL. SOLIDS
	%TS	%VS	FLOW	%TS	%VS	FLOW	FEED %VS	FEED %VS	REDUCTION
1	4.16	80.9	12578	4.11	72.9	28100	75.4	64.5	40.7
2									
3									
4									
5									
6	3.35	77.4	39487	4.55	74.8	30800	76.1	65.4	40.5
7	4.66	78.6	25379	4.16	75.4	35100	76.8	62.9	48.9
8	4.09	80.6	27071	3.99	74.7	33100	77.4	64.5	46.9
9									
10									
11									
12	5.20	79.5	33293	3.60	75.9	31700	78.1	64.9	48.1
13	5.49	79.4	27726	4.52	75.1	32100	77.3	65.0	45.5
14	4.41	79.5	35089	4.58	74.9	27500	77.4	65.3	45.2
15	6.35	81.0	36215				81.0	66.3	53.9
16					,				
17					•				
18									
19	5.77	80.7	23942	3.80	74.1	34300	77.5	64.7	46.8
20	5.59	82.1	26122	4.47	74.9	36300	78.3	67.2	43.3
21	5.23	80.1	39398	2.99	73.4	34600	77.9	66.7	43.0
22	3.11	80.7	36601				80.7	68.5	48.0
23	3.28	77.8	8842				77.8		
24									
25									
26	3.49	76.5	40532	4.28	73.0	29800	74.8	69.5	23.4
27	2.79	77.0	39998	4.35	74.7	35400	75.7	66.9	35.0
28	3.65	79.0	36933	4.10	73.6	40200	76.0	64.2	43.5
29	3.62	78.6	27825	3.90	72.7	35600	75.2	65.8	36.5
30									
31									
AVG	4.37	79.4	30414	4.10	74.3	33186	77.3	65.8	43.4

SAN LUIS REY WASTEWATER TREATMENT PLANT - AUGUST 1999

REQUIREMENTS FOR VECTOR ATTRACTION REDUCTION - 503.33 (b) (1) - OPTION 1 REDUCTION IN VOLATILE SOLIDS CONTENT - AT LEAST 38% REDUCTION REQUIRED

MONT	RA'	W SLUI	DGE	DAF	SLUD	GE	DIGESTER	PRESS	VOL. SOLIDS
	%TS	%VS	FLOW	%TS	%VS	FLOW	FEED %VS	FEED %VS	REDUCTION
1									
2								66.0	
3	2.40	76.6	38775	3.86	74.6	28600	75.5	66.6	35.3
4				3.80	73.9	30800	73.9	67.5	26.6
5	2.95	77.8	38401	4.37	73.8	34800	75.5	66.7	35.0
6									
7									
8									
9	3.82	75.4	38372				75.4	65.2	38.9
10				3.95	77.1	38100	77.1	65.7	43.1
11	4.37	79.3	10521				79.3	69.4	40.8
12	3.67	78.2	37610				78.2	65.2	47.8
13									
14									
15									
16	4.37	77.5	29502	6.50	73. 6	32300	75.1	65.6	36.7
17	4.42	77.7	29174	5.83	74.5	28600	75.9	67.0	35.5
18	3.77	77.3	27062				77.3	67.1	40.1
19	3.93	78.6	35287	6.10	74.1	24900	76.2	64.7	42.9
20									
21									
22									
23	4.70	78.5	37057	6.33	73.4	25400	76.1	64.2	43.5
24	3.90	79.1	30673	5.73	73.9	24400	76.3	66.9	37.2
25				4.51	74.6	24600	74.6	66.0	33.9
26	3.22	77.2	18890				77.2	65.8	43.2
27									
28									
29									
30	4.26	80.9	20673	3.32	75.6	34100	77.9	64.0	49.6
31	5.01	79.8	29701	4.26	76.4	34400	78.1	65.4	47.0
AVG	3.91	78.1	30121	4.88	74.6	30083	76.4	66.1	40.1

AVERAGE % VOLATILE SOLIDS REDUCTION FOR JULY AND AUGUST

NOTICE AND NECESSARY INFORMATION (NANI)

This form is to assist compliance with the bulk sewage sludge (biosolids) notification requirements [503.12(f)]. Please note, however, that if the biosolids meet the exceptional quality criteria, then the notification requirements do not apply. This form can be used by preparers of biosolids to transmit information to land appliers and also by land appliers to transmit information to land owners or lease holders.

Facility and Biosolids Type: <u>San Luis Rey WWTP Dewatered Digested Sludge</u> Monitoring Period: From <u>09/01/99</u> To 10/31/99

To be Completed by PREPARERS of Biosolids

A. Please provide pollutant concentrations

B.

Name	Concentration (mg/kg) Dry Weight	Pollutant Concentrations (Table 3, 40 CFR 503.13) (monthly average)	Ceiling Concentrations* (Table 1, 40 CFR 503.13) (daily maximum)
Arsenic	5.7 mg/kg	41 mg/kg	75 mg/kg
Cadmium	2.0 mg/kg	39 mg/kg	85 mg/kg
Chromium	33 mg/kg	No Limit	No Limit
Copper	294 mg/kg	1500 mg/kg	4300 mg/kg
Lead	19 mg/kg	300 mg/kg	840 mg/kg
Mercury	0.8 mg/kg	17 mg/kg	57 mg/kg
Molybdenum	11 mg/kg	N/A**	75 mg/kg
Nickel	32 mg/kg	, 420 mg/kg	420 mg/kg
Selenium	10 mg/kg	′ 100 mg/kg	100 mg/kg
Zinc	734 mg/kg	2800 mg/kg	7500 mg/kg
Nitrogen Concentration	Not Tested	N/A	N/A

^{*} Biosolids may not be land applied if any pollutant exceeds these values.

Pathogen Reduction (40 CFR 503.32) -- Please indicate the level achieved

	☐ Class A	XI Class B - 4	0 CFR 503.32 (b)	(2) Alternative 1.			
C.	Vector Attraction R	Vector Attraction Reduction (40 CFR 503.33) Please indicate the option performed					
	🔀 Option I	☐ Option 2	☐ Option 3	☐ Option 4			
	☐ Option 5	☐ Option 6	☐ Option 7	☐ Option 8			
	☐ No vector attrac	ction reduction options were	performed				
D.	CERTIFICATION I certify under pena accordance with a s	alty of law that this docume	nt and all attachments were at qualified personnel pro	e prepared under my direction or supe perly gather and evaluate the informa	ervision in		

submitted. Based on my inquiry of the person or persons who manage the system or these persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

A. Name and Official Title (type or print) Guss Pennell, Environmental Regulatory Compliance Officer	B. Area Code and Telephone Number 760-966-8795 & 760-966-4874 (FAX)
C. Signature Jun Monall	D. Date Signed January 14, 2000

^{**} EPA has temporarily removed molybdenum limits from Table 3, Table2 and Table 4.

WATER UTILITIES DEPARTMENT LABORATORY

LABORATORY REPORT

Identification:

San Luis Rey WWTP; sample taken from the belt press

Sample ID:

Associated Labs # 141484

Date sampled:

08-Sep-99

Analysis performed by: Associated Laboratories; Orange, CA

Date reported:

05-Oct-99

			Limits - 40 CFR 503	
		Results	Pollutant	Ceiling
		(mg/kg)	concentrations	concentrations
Analyte	Method	dry weight	(monthly ave)	(daily max)
Arsenic	7060	5.18	41 mg/kg	75 mg/kg
Cadmium	6010	, 2.61	39 mg/kg	85 mg/kg
Chromium	6010	32.9	no limit	no limit
Copper	6010	292	1500 mg/kg	4300 mg/kg
Lead	7420	18.1	300 mg/kg	840 mg/kg
Mercury	245.5	1.32	17 mg/kg	57 mg/kg
Molybdenum	6010	10.6	N/A	75 mg/kg
Nickel	6010	34.3	420 mg/kg	420 mg/kg
Selenium	7740	9.21	100 mg/kg	100 mg/kg
Zinc	6010	704	2800 mg/kg	7500 mg/kg

Methods: EPA SW846, Test Methods for Evaluating Solid Wastes, Third edition.

WATER UTILITIES DEPARTMENT LABORATORY, by:

Mary Gonzáles

Laboratory Supervisor

CITY OF OCEANSIDE

WATER UTILITIES DEPARTMENT LABORATORY

LABORATORY REPORT

Identification:

San Luis Rey WWTP; sample taken from the belt press

Sample ID:

Associated Labs # 146016

Date sampled:

04-Oct-99

Analysis performed by: Associated Laboratories; Orange, CA

Date reported:

04-Nov-99

<u> </u>			Limits - 40 (CFR 503
		Results	Pollutant	Ceiling
		(mg/kg)	concentrations	concentrations
Analyte	Method	dry weight	(monthly ave)	(daily max)
Arsenic	7060	6.23	41 mg/kg	75 mg/kg
Cadmium	6010	, ND <1.32	39 mg/kg	85 mg/kg
Chromium	6010	32.8	no limit	no limit
Copper	6010	295	1500 mg/kg	4300 mg/kg
Lead	7420	19.1	300 mg/kg	840 mg/kg
Mercury	245.5	0.34	17 mg/kg	57 mg/kg
Molybdenum	6010	12.2	N/A	75 mg/kg
Nickel	6010	29.4	420 mg/kg	420 mg/kg
Selenium	7740	10.8	100 mg/kg	100 mg/kg
Zinc	6010	764	2800 mg/kg	7500 mg/kg

Methods: EPA SW846, Test Methods for Evaluating Solid Wastes, Third edition.

WATER UTILITIES DEPARTMENT LABORATORY, by:

Laboratory Supervisor

4/2230

City of Oceanside Water Utilities Department Laboratory San Luis Rey Wastewater Treatment Plant 3950 North River Road Oceanside, California 92054

phone: 760-966-8772

fax: 760-966-8770

To: Associated Laboratories

P.O. # 20005

Date: September 9, 1999

Sample Description	Date/Tim	e Sampled	Analyze for:
Sludge samples SLR Belt Press Cake	08-Sep-9	9 @ 11:25	Analyze both samples for metals for "503" sludge regs: Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Molybdenum, Nickel, Selenium, & Zinc
LS Belt Press Cake	, 08-Sep-9	9 @ 04:00	Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Molybdenum, Nickel, Selenium, & Zinc
			These answers need to be reported as mg/kg dry weight.
		r	
Relinquished by:		Relinquished by:	
m African	1421)		
(Signature) HAMMON)	9/9/9 g	(Signature)	(Time)
(Printed name)	(Date)	(Printed name)	(Date)
Received by:	2:20	Received by Associ	ciated Laboratory
(Signature) LICHARD GARCIA	(Time) 9/9/99	(Signature)	(Time)
(Printed name)	(Date)	(TIES harry)	

FAX 714/538-176

CLIENT City of Oceanside

(3869)

LAB REQUEST 42230

ATTN: Mary Gonzales

Water Utilities Department Lab

REPORTED 9/28/99

3950 North River Road

Oceanside, CA 92054

RECEIVED 9/9/99

SUBMITTER

Client

COMMENTS

Results expressed on "Dry Weight Basis"

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

> Order No. 141484 141485

Client Sample Identification SLR Belt Press Cake LS Belt Press Cake

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORATORIES by,

Robert A. Webber Vice President

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 30 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemica: Microbiologica: Environmenta:

Matrix: SOLID

Date Sampled: 9/ 8/99 Time Sampled: 11:25

Sampled By:

Client: City of Oceanside

Client Sample ID: SLR Belt Press Cake

Analyte	Result	DF	DLR	Units	Date/A	nalyst
245.5 Mercury in Solids by Manual Cold Vapor						
Mercury	1.32	1	0.12	mg/Kg	9/13/99	МЈ
6010B ICP Metals - Solid/Liquid					•	
Arsenic	5.18	1	0.20	mg/Kg	9/14/99	MT
Cadmium	2.61	1	0.20	mg/Kg	9/14/99	MT
Chromium	32.9	l	0.59	mg/Kg	9/14/99	MT
Copper	292	l	0.22	mg/Kg	9/14/99	MT
Lead	18.1	<u>l</u>	0.25	mg/Kg	9/14/99	MT
Molybdenum	10.6	1	0.65	mg/Kg	9/14/99	MT
Nickel	34.3	1	0.68	mg/Kg	9/14/99	MT
Selenium	9.21	<u>l</u>	0.37	mg/Kg	9/14/99	MT
Zinc	704	<u>1</u>	0.34	mg/Kg	9/14/99	MT

City of Oceanside Water Utilities Department Laboratory San Luis Rey Wastewater Treatment Plant 3950 North River Road Oceanside, California 92054

43465

phone: 760-966-8772

fax: 760-966-8770

To: Associated Laboratories

P.O. # 20005

Date: October 7, 1999

Sample Description	Date/Time Sampled	Analyze for:
Sludge samples SLR Belt Press Cake	04-Oct-99 @ 11:25	Analyze both samples for metals for "503" sludge regs: Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Molybdenum, Nickel, Selenium, & Zinc
LS Belt Press Cake	, 05-Oct-99 @ 04:00	Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Molybdenum, Nickel, Selenium, & Zinc
		These answers need to be reported as mg/kg dry weight.
3	Relinquish	and hv
Relinquished by:	Reiniquisi	ica by.
mol	1230	
(Signature)	(Time) (Signature)	(Time)
HammoND	11/2/10	
	/0/ // 9 (Date) (Printed name) (Date)
(Printed name)	` T	
Received by:	Received Received	Worning Missociated Laboratory (Time)
(Signature) RICHARCE GARCIN	(Time) (Signature)	V DEMPSEY 10-8-9 9 (Date)
(Printed name)	(Date) (Printed name	;)

FAX 714/538-12L

CLIENT City of Oceanside

(3869)

LAB REQUEST 43465

ATTN: Mary Gonzales

REPORTED 10/28/99

Water Utilities Department Lab 3950 North River Road

Oceanside, CA 92054

RECEIVED 10/7/99

SUBMITTER Client

COMMENTS

Results reported on "Dry Weight Basis"

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

> Order No. 146016 146017

Client Sample Identification SLR Belt Press Cake LS Belt Press Cake

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORATORIES by,

Vice President

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 30 days from date reported.

TESTING & CONSULTING Chemica Microbiological Environmental

The reports of the Associated Laboratories are confidential property of our clients may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

146016 Matrix: SOLID

Date Sampled: 10/4/99

Time Sampled: 11:25

Sampled By:

Client: City of Oceanside

Client Sample ID: SLR Belt Press Cake Sample Description: Sludge Samples

Analyte		Result	DF	DLR	Units	Date/An	alyst
245.5 Mercury in Solids by Manual Cold Vapor							
Mercury		0.34	1	0.12	mg/Kg	10/11/99	МЈ
6010B ICP Metals - Solid/Liquid							
Arsenic		6.23	1 -	0.20	mg/Kg	10/13/99	MD
Cadmium	1	ND	1	1.32	mg/Kg	10/13/99	MD
Chromium	i i	32.8	1	0.59	mg/Kg	10/13/99	MD
Copper		295	i	0.22	mg/Kg	10/13/99	MD
Lead		19.1	l	0.25	mg/Kg	10/13/99	MD
Molybdenum		12.2	l	0.65	mg/Kg	10/13/99	MD
Nickel	1	29.4	1	0.68	mg/Kg	10/13/99	MD
Selenium	<u>-</u>	10.8	1	0.37	mg/Kg	10/13/99	MD
Zinc		764	l	0.34	mg/Kg	10/13/99	MD

CITY OF OCEANSIDE

WATER UTILITIES DEPARTMENT LABORATORY

TREATED SEWAGE SLUDGE MONITORING September - October 1999

Type of monitoring: Bacteriological Sampling frequency: bimonthly

Requirement for class B alternative I: Density of fecal coliform from seven samples of treated sewage sludge must not exceed 2 million per gram of sewage sludge solids.

ple 1	per 100 ml	% TS	per gm TS	log	sampled	set up	dig #
1							
1							
	300,000	14.2	21,127	4.3248	01-Sep-99	11:20	1
2	300,000	14.9	20,134	4.3039	08-Sep-99	11:30	1
3	220.000	15.6	14,103	4.1493	20-Sep-99	9:30	1
4	•		18,405	4.2649	29-Sep-99	11:30	1
5	•		•	4.5287	04-Oct-99	12:00	1
6			· · · · · · · · · · · · · · · · · · ·	5.0691	11-Oct-99	9:30	1
7	, ,		7,927	3.8991	18-Oct-99	8:13	1
	,						
	2 3 4 5 6 7	3 220,000 4 300,000 5 500,000	3 220,000 15.6 4 300,000 16.3 5 500,000 14.8 6 1,700,000 14.5	3 220,000 15.6 14;103 4 300,000 16.3 18,405 5 500,000 14.8 33,784 6 1,700,000 14.5 117,241	3 220,000 15.6 14;103 4.1493 4 300,000 16.3 18,405 4.2649 5 500,000 14.8 33,784 4.5287 6 1,700,000 14.5 117,241 5.0691	3 220,000 15.6 14;103 4.1493 20-Sep-99 4 300,000 16.3 18,405 4.2649 29-Sep-99 5 500,000 14.8 33,784 4.5287 04-Oct-99 6 1,700,000 14.5 117,241 5.0691 11-Oct-99	3 220,000 15.6 14;103 4.1493 20-Sep-99 9:30 4 300,000 16.3 18,405 4.2649 29-Sep-99 11:30 5 500,000 14.8 33,784 4.5287 04-Oct-99 12:00 6 1,700,000 14.5 117,241 5.0691 11-Oct-99 9:30

 $\begin{array}{ccc} & & \log mean = & 4.3628 \\ \textbf{geometric mean} = & & \text{antilog } = (4.3628) & \textbf{23,100} \end{array}$

meets class B alternative I standards: Yes

Method: Standard Methods for the Examination of Water and Wastewater, 18th edition. fecal coliform - direct test by most porbable number (MPN), 9221 E.2. % TS - 2540 B.

WATER UTILITIES DEPARTMENT LABORATORY, by:

Laboratory Supervisor

SAN LUIS REY WASTEWATER TREATMENT PLANT - SEPTEMBER 1999

REQUIREMENTS FOR VECTOR ATTRACTION REDUCTION - 503.33 (b) (1) - OPTION 1 REDUCTION IN VOLATILE SOLIDS CONTENT - AT LEAST 38% REDUCTION REQUIRED

MONT	RA'	w slu	DGE	DAF	SLUD	GE	DIGESTER	PRESS	VOL. SOLIDS
	%TS	%VS	FLOW	%TS	%VS	FLOW	FEED %VS	FEED %VS	REDUCTION
1	4.47	80.1	41329	7.13	74.2	48700	76.2	64.2	44.1
2	3.84	80.5	18839				80.5	65.9	53.2
3	3.84	80.5	24203				80.5		
4									
5									
6									
7	5.27	80.5	25422	5.40	74.7	29100	77.4	65.5	44.5
8	4.42	78.8	14350				78.8	66.7	46.1
9	4.30	79.9	17360	5.23	76.9	30800	77.8	66.7	43.0
10									
11									
12									
13	4.55	80.3	30948				80.3	66.3	51.7
14	4.10	78.0	31798	4.61	77.1	20800	77.6	66.9	41.7
15	4.70	77.3	34978				77.3	64.5	46.6
16	4.19	77.5	26705	5.73	75.4	15400	76.6	65.2	42.7
17									
18									
19									
20	5.27	79.2	25325	6.23	73.8	21800	76.5	65.3	42.1
21	4.97	79.8	19873	5.55	74.9	35500	76.5		
22	4.18	79.4	19157				79.4	65.3	51.2
23	4.14	79.2	28121	5.68	74.6	24000	76.7	67.2	37.8
24									
25									
26									
27	4.76	79.7	31171	6.41	76.5	16800	78.4	65.6	47.3
28	4.95	80.1	28780	5.63	75.9	17400	78.4	66.7	44.8
29	4.56	78.7	26411	5.38	76.1	18900	77.5	65.0	46.1
30	3.82	79.3	27294	5.83	75.9	22100	77.4	67.8	38.6
AVG	4.46	79.4	26226	5.73	75.5	25108	78.0	65.9	45.4

SAN LUIS REY WASTEWATER TREATMENT PLANT - OCTOBER 1999

REQUIREMENTS FOR VECTOR ATTRACTION REDUCTION - 503.33 (b) (1) - OPTION 1 REDUCTION IN VOLATILE SOLIDS CONTENT - AT LEAST 38% REDUCTION REQUIRED

MONT		W SLU			SLUD		DIGESTER	PRESS	VOL. SOLIDS
	%TS	%VS	FLOW	<u>%TS</u>	%VS	FLOW	FEED %VS	FEED %VS	REDUCTION
1									
2									
3	0.44	70.0	0.47.40	4.00	7. 7	00400	70.4	04.4	40.0
4	6.14	79.6	34742	4.90	75.7	28100	78.1	64.1	49.8
5	4.78	80.0	21750	5.21	73.6	31200	76.1	65.1	41.4
6	5.01	80.3	30564	6.24	75.9	23400	78.2	65.3	47.4
7	3.87	79.8	27814	5.40	76.3	22200	78.0	67.5	41.3
8									
9									
10	4.00	70.0	2222	r 70	74.0	05400	70.0	65.4	40.0
11	4.83	78.6	32820	5.78	74.8	25400	76.8	65.4	42.8
12	4.94	79.4	36619	<i>r</i> 00	74.0	00000	79.4	66.7	48.0
13	4.11	79.0	28404	5.28	74.8	30200	76.6 70.0	66.7	38.7
14	3.55	78.3	27269	5.51	76.1	31800	76.9	67.2	38.4
15									
16					,				
17 18	5.17	79.3	23574	5.37	75.3	22300	77.3	66.4	42.0
19	3.60	78.7	29268	4.71	75.3 76.7	32100	77.5 77.5	66.0	43.7
20	4.06	78.7 78.9	31785	4.71	10.1	32100	77.5 78.9	67.2	45.2
21	3.72	80.4	30654				70.9 80.4	66.9	50.7
21	3.12	60.4	30034				00.4	00.9	30.7
23									
24									
25	3.81	78.6	22860				78.6	66.7	45.5
26	4.44	78.5	33007	6.13	78.1	34400	78.3	66.0	46.1
27	3.61	77.9	36020	0.10	70.1	04400	77.9	68.0	39.7
28	3.67	78.6	37237				78.6	67.4	43.7
29	0.07	, 0.0	01201				70.0	O1.7	
30									
31									
AVG	4.33	79.1	30274	5.45	75.7	28110	78.0	66.4	44.1

AVERAGE % VOLATILE SOLIDS REDUCTION FOR SEPTEMBER AND OCTOBER

NOTICE AND NECESSARY INFORMATION (NANI)

This form is to assist compliance with the bulk sewage sludge (biosolids) notification requirements [503.12(f)]. Please note, however, that if the biosolids meet the exceptional quality criteria, then the notification requirements do not apply. This form can be used by preparers of biosolids to transmit information to land appliers and also by land appliers to transmit information to land owners or lease holders.

Facility and Biosolids Type: San Luis Rey WWTP Dewatered Digested Sludge

Monitoring Period: From 11 / 01 / 99 To 12 / 31 / 99

To be Completed by PREPARERS of Biosolids

A. Please provide pollutant concentrations

Name	Concentration (mg/kg) Dry Weight	Pollutant Concentrations (Table 3, 40 CFR 503.13) (monthly average)	Ceiling Concentrations* (Table 1, 40 CFR 503.13) (daily maximum)
Arsenic	5.9 mg/kg	41 mg/kg	75 mg/kg
Cadmium	4.3 mg/kg	39 mg/kg	85 mg/kg
Chromium	37 mg/kg	No Limit	No Limit
Copper	343 mg/kg	1500 mg/kg	4300 mg/kg
Lead	32 mg/kg	300 mg/kg	840 mg/kg
Mercury	2.1 mg/kg	17 mg/kg	57 mg/kg
Molybdenum	13 mg/kg	N/A**	75 mg/kg
Nickel	55 mg/kg	, 420 mg/kg	420 mg/kg
Selenium	12 mg/kg	' 100 mg/kg	100 mg/kg
Zinc	716 mg/kg	2800 mg/kg	7500 mg/kg
Nitrogen Concentration	Not Tested	N/A	N/A

^{*} Biosolids may not be land applied if any pollutant exceeds these values.

B.	Pathogen Reduction (40 (CFR	503.32) -	- Ple	ase ii	ndicate	the level	achie	ved			
	□ Class A	X	Class B	_	40	CFR	503.32	(b)	(2)	Alte	rnative	1
C.	Vector Attraction Reduct	tion	(40 CFR 5	03.3	3)	Please	indicate t	he opt	ion pe	erforme	ed.	
	🔀 Option I		Option 2				Option	3			Option 4	
	☐ Option 5		Option 6	i			Option	7			Option 8	
	☐ No vector attraction re	educ	ction optio	ns w	ere p	erforn	ned					

D. CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or these persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

A. Name and Official Title (type or print) Guss Pennell, Environmental Regulatory Compliance Officer	B. Area Code and Telephone Number 760-966-8795 & 760-966-4874 (FAX)
C. Signature Jun Wannell	D. Date Signed January 14, 2000

^{**} EPA has temporarily removed molybdenum limits from Table 3, Table2 and Table 4.

OF OCEANSIDE

WATER UTILITIES DEPARTMENT LABORATORY

LABORATORY REPORT

Identification:

San Luis Rey WWTP; sample taken from the belt press

Sample ID:

Associated Labs # 44763

Date sampled:

02-Nov-99

Analysis performed by: Associated Laboratories; Orange, CA

Date reported:

18-Nov-99

			Limits - 40 CFR 503			
		Results	Pollutant	Ceiling		
		(mg/kg)	concentrations	concentrations		
Analyte	Method	dry weight	(monthly ave)	(daily max)		
Arsenic	6010	6.53	41 mg/kg	75 mg/kg		
Cadmium	6010	2.69	39 mg/kg	85 mg/kg		
Chromium	6010	, 39.4	no limit	no limit		
Copper	6010	341	1500 mg/kg	4300 mg/kg		
Lead	6010	40.7	300 mg/kg	840 mg/kg		
Mercury	245.5	2.44	17 mg/kg	57 mg/kg		
Molybdenum	6010	10.5	N/A	75 mg/kg		
Nickel	6010	55.9	420 mg/kg	420 mg/kg		
Selenium	6010	11.5	100 mg/kg	100 mg/kg		
Zinc	6010	666	2800 mg/kg	7500 mg/kg		

Methods: EPA SW846, Test Methods for Evaluating Solid Wastes, Third edition.

WATER UTILITIES DEPARTMENT LABORATORY, by:

Mary Gonzales

Laboratory Supervisor

OF OCEANSIDE

WATER UTILITIES DEPARTMENT LABORATORY

LABORATORY REPORT

Identification:

San Luis Rey WWTP; sample taken from the belt press

Sample ID:

Associated Labs # 157488

Date sampled:

01-Dec-99

Analysis performed by: Associated Laboratories; Orange, CA

Date reported:

13-Jan-00

		·	Limits - 40 CFR 503					
		Results	Pollutant	Ceiling				
		(mg/kg)	concentrations	concentrations				
Analyte	Method	dry weight	(monthly ave)	(daily max)				
Arsenic	6010	5.29	41 mg/kg	75 mg/kg				
Cadmium	6010	5.97	39 mg/kg	85 mg/kg				
Chromium	6010	, 34.9	no limit	no limit				
Copper	6010	344	1500 mg/kg	4300 mg/kg				
Lead	6010	22.3	300 mg/kg	840 mg/kg				
Mercury	245.5	1.69	17 mg/kg	57 mg/kg				
Molybdenum	6010	14.5	N/A	75 mg/kg				
Nickel	6010	54.7	420 mg/kg	420 mg/kg				
Selenium	6010	12	100 mg/kg	100 mg/kg				
Zinc	6010	766	2800 mg/kg	7500 mg/kg				

Methods: EPA SW846, Test Methods for Evaluating Solid Wastes, Third edition.

WATER UTILITIES DEPARTMENT LABORATORY, by:

Mary Gonzales

Laboratory Supervisor

Mary Gonzale

CITY OF OCEANSIDE

WATER UTILITIES DEPARTMENT LABORATORY

TREATED SEWAGE SLUDGE MONITORING Nov-Dec 1999

Type of monitoring: Bacteriological Sampling frequency: bimonthly

Requirement for class B alternative I: Density of fecal coliform from seven samples of treated sewage sludge must not exceed 2 million per gram of sewage sludge solids.

		# fecal coliform		# fecal coliform		date	time	
Sample location	Sample	per 100 ml	% TS	per gm TS	log	sampled	sampled	dig#
San Luis Rey	1	16,000,000	16.4	975,610	5.9893	01-Nov-99	900	1
press cake	2	3,000,000	16.2	185,185	5.2676	09-Nov-99	900	1
•	3	3,000,000	14.3	209,790	5.3218	15-Nov-99	945	1
	4	500,000	14.9	33,557	4.5258	22-Nov-99	930	1
	5	500,000	15.8	31,646	4.5003	01-Dec-99	1015	1
	6	500,000	15.4	32,468	4.5114	06-Dec-99	1115	1
	7	40,000	16.4	2,439	3.3872	15-Dec-99	1100	1
		•		,				

 $\log mean = 4.7862$

geometric mean = antilog = (4.7862) 61,122

meets class B alternative I standards: Yes

Method: Standard Methods for the Examination of Water and Wastewater, 18th edition.

fecal coliform - direct test by most porbable number (MPN), 9221 E.2.

% TS - 2540 B.

WATER UTILITIES DEPARTMENT LABORATORY, by: Valerie Gallwas

Mary Gonzales

Laboratory Supervisor

SAN LUIS REY WASTEWATER TREATMENT PLANT - NOVEMBER 1999

REQUIREMENTS FOR VECTOR ATTRACTION REDUCTION - 503.33 (b) (1) - OPTION 1

REDUCTION IN VOLATILE SOLIDS CONTENT - AT LEAST 38% REDUCTION REQUIRED

MONT		W SLUI			SLUD		DIGESTER	PRESS	VOL. SOLIDS REDUCTION
	%TS	%VS	FLOW	%TS	%VS	FLOW	FEED %VS	FEED %VS	REDUCTION
1 2	4.63	70.4	35406	4.89	79.0	21700	79.2	66.2	48.7
3	4.05 4.05	79.4 78.6	32841	5.91	78.1	25500	78.2 78.3	67.7	42.0
4	4.03	80.4	27449	3.91	70.1	23300	80.4	66.4	51.8
5	3.96	79.3	28327				79.3	00.4	1
6	3.30	7 9.0	20021				70.0	66.7	
7								00.7	
8									
9	5.09	79.0	29975	6.36	77.8	17300	78.5	65.5	48.0
10	4.94	79.4	38720	4.12	79.2	15800	79.3	66.9	47.4
11	4.51	79.7	36135	5.12	77.8	20700	79.0	65.6	49.2
12									
13									
14									
15									
16	2.11	79.6	34523	6.98	76.5	17900	77.6	65.1	46.3
17	4.53	78.3	15784	6.77	78.0	22600	78.1		
18	3.65	78.6	18525				78.6	64.5	50.5
19	4.01	81.0	14515	4.95	77.1	11600	79.1	66.9	46.5
20									
21									
22								-	47.0
23	2.68	76.5	39897	5.03	79.6	13100	77.7	64.7	47.3
24	3.09	78.6	44935	5.21	80.1	23400	79.3		47.0
25	3.28	78.0	44513	4.33	79.1	29600	78.5	65.7	47.6
26									
27									
28									
29	0.47	70.5	10110				70.5	67.5	43.1
30	3.17	78.5	40143				78.5	67.5	43.1
AVG	3.87	79.0	32113	5.42	78.4	19927	78.8	66.1	47.4

SAN LUIS REY WASTEWATER TREATMENT PLANT - DECEMBER 1999

REQUIREMENTS FOR VECTOR ATTRACTION REDUCTION - 503.33 (b) (1) - OPTION 1 REDUCTION IN VOLATILE SOLIDS CONTENT - AT LEAST 38% REDUCTION REQUIRED

MONT	RA'	W SLUI	DGE	DAF	SLUD	GE	DIGESTER	PRESS	VOL. SOLIDS
	%TS	%VS	FLOW	%TS	%VS	FLOW	FEED %VS	FEED %VS	REDUCTION
1	2.68	78.1	50702	6.18	78.6	11700	78.3	67.5	42.4
2	2.90	79.7	48481	5.52	78.5	33000	79.0	67.3	45.4
3									
4									
5									
6	1.09	69.2	48574	5.26	77.3	22900	74.8	67.3	30.8
7	3.05	76.1	56729				76.1	67.2	35.7
8	3.11	79.4	59559				79.4	66.0	49.6
9	2.99	79.1	60940	4.51	77.3	21600	78.5	66.0	46.7
10									
11									
12									
13	2.57	77.7	43710				77.7	68.2	38.4
14	3.03	78.9	38393				78.9	67.3	45.0
15	3.44	77.6	40070	5.75	75.0	28200	76.2	67.0	36.6
16	3.31	79.7	38414		,		79.7	66.3	49.9
17									
18									
19									
20	3.37	80.9	35924	7.03	78.2	18100	79.5	67.3	47.0
21	3.16	79.8	38864				79.8	69.3	42.9
22	4.90	79.3	37570				79.3	67.1	46.8
23	4.12	78.9	42074				78.9	66.7	46.4
24									
25									
26									
27	4.99	79.3	29665				79.3	67.1	46.8
28	4.99	81.4	34843				81.4	66.4	54.8
29	2.70	78.5	51528	6.63	78.9	24100	78.7	67.3	44.3
30	2.65	77.9	59759	5.32	75.8	31000	76.8	63.9	46.6
31									
AVG	3.28	78.4	45322	5.78	77.5	23825	78.5	67.0	44.4

AVERAGE % VOLATILE SOLIDS REDUCTION FOR NOVEMBER AND DECEMBER

City of Oceanside SEWAGE SLUDGE ANNUAL REPORT - 1999

Location: San Luis Rey Wastewater Treatment Plant – Continued:

Priority Pollutant Analyses: See following pages for samples taken on May 17, 1999 and October 13, 1999. The monitoring was required by our NPDES Permit No. CA0107433 in Order 95-07 under Section F. 4. a. Pretreatment Requirements.

FAX 714/538-1209

CLIENT City of Oceanside

(3869)

LAB REQUEST 37557

ATTN: Mary Gonzales Water Utilities Department Lab

REPORTED 6/21/99

3950 North River Road Oceanside, CA 92054

RECEIVED 5/19/99

SUBMITTER Client

COMMENTS

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

Order No.	Client Sample Identification
123256	SLR Raw Influent - Comp.
123257	SLR Final Effluent - Comp
123258	LS Raw Influent - Comp
123259	LS Final Effluent - Comp
123299	SLR Sludge - Comp
123300	LS Sludge - Comp

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

TED LABORATORIES

Vice President

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 30 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental City of Oceanside Water Utilities Department Laboratory San Luis Rey Wastewater Treatment Plant 3950 North River Road Oceanside, California 92054 37557

phone: 760-966-8772

fax: 760-966-8770

To: Associated Laboratories

P.O. # 99008

Date: May 18, 1999

	Sample Description	Date/Tim	e Sampled	Analyze for:	
	SLR raw inf, final eff & sludge cake	SLR cake 0930 to	1215 on 5/17/99	metals - arsenic, cadmium chromium	
	24 hour composites	SLR raw & final		copper, lead, mercury, nickel, selenium	
		to 0930 on 5/18/9		silver, zinc, beryllium, antimony,	
	LS raw inf, final eff & sludge cake 💍 🌣	LS cake 1400 on	5/17/99 to	thallium, molybdenum	
	24 hour composites ·	0200 on 5/18/99		SM 4500-CN C&E - cyanide	
	✓	LS raw & final 04		EPA 900 - radioactivity	-
		to 0400 on 5/18/9	99	tributyltin (on final only)	
					ļ
-	B with	SLR cake 0930 to		EPA 1664 - grease/oil (raw & final only)	
	,	SLR raw inf 0930		EPA 603 - acrolein/acrylonitrile	j
İ	5	SLR final eff 093		EPA 608/8080 - pest/pcb	
		LS cake 1400 on		EPA 610/8310 - PAHs	-
		0200 on 5/18/99		EPA 624/8240 - volatiles	1
	*	LS raw inf 0400 c LS final eff 0400		EPA 625/8270 - semi-volatiles	١
		LS final eff 0400	on 3/18/99		
		•			
Ì			,		
	•				
Ī	Relinquished by:		Relinquished by:		٦
	ω .	_		ta,	I
	1 have Complex	1315	// sur	V DE	╛
ľ	(Signature)	(Time)	(Signature)	(Time	:)
İ	Mari bourales	5/19/94	KIS HARROL	(-MICA 5/19/99	
ľ	(Printed name)	(Date)	(Printed name)	(Date	:)
ŀ	Regeived by:		Received by Assoc	iated Laboratory	╡
		. C	.1/	7/	
	Il War vi	15	William	agen	
[Signature)	(Time)	(Signature)	(Time	;)
	Dictioned (Source	5-19-90	All 5-1	(avel 5-26-5	إد
1	Printed name)		(Printed name)	(Date	4
Ľ		(- · · ·)	<u>'</u>		

Client: City of Oceanside Client: Sample ID: SLR Sludge - Comp		alvst _
Client: City of Oceanside Client: City of Oceanside Client Sample ID: SLR Sludge - Comp		Units Date/Analyst
Client: Sample ID: SLR	n R	Units
123299 Client S	Result DF DLR	
	Result	11199 MD
Matrix: Sold Billion to 122		mg/Kg 6/1/99 MD
Date moleu. n1 ant	0.12	
13" d by .	0.38	JA JA
Analyte Analyte 245.5 Mercury in Solids by Manual Cold Vapor Mercury		0.5 mg/Kg 5/24/99 JA
hy Manual Colu		0.5 mg
oury in Solids Di	NDJ 1	MT MT
245.5 Mercury		5127199
Mercury Mercury		mg/ 5/27/99
cvanide	2411	0.10 mg/Kg 5/27/95 M7
335.2 Total Cyanide	2.41 1 ND 1	0.20 mg/Kg 5/2/1/99 M
335.2 10 Cyanide	1 7571	0.59 mg/Kg 37/99
1c. Solid Liquiu	1 / (01)	0.22 mg/Kg 107/99
6010B ICP Metals - Solid/Liquid Antimony	42.8	0.63 mg/Kg 127/99
6010B. Antimony	1.75	0.60 mg/Kg 27/99
peryllium	1.37	
- Cadmiun	3.56	1 0.34 ms
Chromium	1111	
Copper Molybdenum		10.0 mg/Kg 5/27/9
Molybo		10 10.0 mg
Silver	NI)\
		10 mg/Kg 5
hite Furnace		10
Zinc Zinc Zinc Zinc Arsenic by Graphite Furnace Arsenic		ND
7060A Arsenic		
Arsenation		1.0 mg/Kg
A Direct Aspirace		ND] 1
Arson 7420 Lead AA, Direct Aspiration Lead		NUT
Lead		10.0 mg
Lead Lead 1740 Selenium by Graphite Furnace Selenium		10
7740 Selenium Dy		ND
7740 Selenium Selenium		
Selenium by Graphite Furnace		: DF = 1
Thallium by Gran		detection limit, 2
7841 1 Thallium	.cC	s helow indicated us
**	and by the case	ed bus
Thallium Thallium Thallium Solution of the Pestician o	norting purposes, ND = Not Delection Norting purposes, ND = Not Delection Norting purposes, ND = Not Delection Lab Request Lab Request	tical Results, Page 25 of 40
8081A - OIR	orting pur	rtical Results, page 25
Detection limit 101	TARIES	(375 ⁵)
DLR = Doos	ABORATO Lab No.	
AN.	D.	

Client: City of Oceanside

Matrix: SOLID

Client Sample ID: SLR Sludge - Comp

Date Sampled: 5/17/99

Time Sampled: 0930 to 1215

Sampled By: Plant Operators

Analyte	Result	DF	DLR	Units	Date/A	Analyst
Aldrin	ND	1	0.002	mg/Kg	5/30/99	LS
Alpha BHC	ND	1	0.002	mg/Kg	5/30/99	LS
Beta BHC	ND	1	0.003	mg/Kg	5/30/99	LS
Chlordane	ND	1	0.008	mg/Kg	5/30/99	LS
DDD	ND	1	0.004	mg/Kg	5/30/99	LS
DDE	ND	1	0.003	mg/Kg	5/30/99	LS
DDT	ND	1	0.003	mg/Kg	5/30/99	LS
Delta BHC	ND	1	0.005	mg/Kg	5/30/99	LS
Dieldrin	ND	1	0.003	mg/Kg	5/30/99	LS
Endosulfan I	ND	1	0.004	mg/Kg	5/30/99	LS
Endosulfan II	ND	1	0.003	mg/Kg	5/30/99	LS
Endosulfan sulfate	ND	1	0.003	mg/Kg	5/30/99	LS
Endrin	ND	1	0.004	mg/Kg	5/30/99	LS
Endrin Ketone	ND	1	0.01	mg/Kg	5/30/99	LS
Endrin aldehyde	ND	1	0.004	mg/Kg	5/30/99	LS
Gamma BHC (Lindane)	ND	1	0.011	mg/Kg	5/30/99	LS
Heptachlor	ND	1	0.002	mg/Kg	5/30/99	LS
Heptachlor epoxide	ND	1	0.003	mg/Kg	5/30/99	LS
Kepone	ND	1	0.01		5/30/99	LS
Lindane	ND	1	0.003		5/30/99	LS
Methoxychlor	ND	1	0.025	mg/Kg	5/30/99	LS
Mirex	ND	1	0.012		5/30/99	LS
PCB-1016	NDI	1	0.033	mg/Kg	5/30/99	LS
PCB-1221	NDI	1	0.05		5/30/99	LS
PCB-1232	NDI	1	0.04		5/30/99	LS
PCB-1242	NDI	1	0.02		5/30/99	LS
PCB-1248	NDI	1	0.08		5/30/99	LS
PCB-1254	ND	1	0.011		5/30/99	LS
PCB-1260	ND	1	0.025		5/30/99	LS
Toxaphene	ND	1	0.24		5/30/99	LS

8260B Volatile Organic Compounds

	4					
1,1,1,2-Tetrachloroethane	ND	1	5	ug/Kg	6/ 8/99	AHT

Client: City of Oceanside

Matrix: SOLID

Client Sample ID: SLR Sludge - Comp

Date Sampled: 5/17/99

Time Sampled: 0930 to 1215. Sampled By: Plant Operators

Analyte		Result	DF	DLR	Unit	s Date/	Analyst
Volatile Organic Compounds							
1,1,1-Trichloroethane	1	NDI	1	5	u ~/V ∘	- C/ B/DD	1 TT00
1,1,2,2-Tetrachloroethane		NDI		5	ug/Kg		AHT
1,1,2-Trichloroethane		NDI	1	5	ug/Kg		AHT
1,1,2-Trichlorotrifluoroethane		NDI	1	5	ug/Kg		AHT
1,1-Dichloroethane	<u>L</u>	NDI	1	5	ug/Kg		AHT
1,1-Dichloroethene		NDI	1	5	ug/Kg		AHT
1,1-Dichloropropene		NDI	1	5	ug/Kg		AHT
1,2,3-Trichlorobenzene		NDI	1	5	ug/Kg	6/ 8/99	AHT
1,2,3-Trichloropropane	<u>l</u>	NDI	1	5	ug/Kg	6/ 8/99	AHT
1,2,4-Trichlorobenzene		NDI	<u>1</u> 1	5	ug/Kg	6/ 8/99	AHT
1,2,4-Trimethylbenzene		NDI	1	5	ug/Kg	6/ 8/99	AHT
1,2-Dibromo-3-chloropropane		NDI	1		ug/Kg	6/ 8/99	AHT
1,2-Dibromoethane		NDI	1	5	ug/Kg	6/ 8/99	AHT
1,2-Dichlorobenzene		NDI	1	5	ug/Kg	6/ 8/99	AHT
1,2-Dichloroethane		NDI	1	5	ug/Kg	6/ 8/99	AHT
1,2-Dichloropropane		NDI	1	5	ug/Kg	6/ 8/99	AHT
1,3,5-Trimethylbenzene		NDI	1	<u>5</u>	ug/Kg	6/ 8/99	AHT
1,3-Dichlorobenzene	1	NDI	1	5	ug/Kg	6/ 8/99	AHT
1,3-Dichloropropane		NDI	1	5	ug/Kg	6/ 8/99	AHT
1,4-Dichlorobenzene		NDI	1	<u>5</u>	ug/Kg	6/ 8/99	AHT
1,4-Dioxane		NDI	1	200	ug/Kg	6/ 8/99	AHT
1-Chlorohexane		NDI	1	5	ug/Kg	6/ 8/99	AHT
2,2-Dichloropropane		NDI	1		ug/Kg	6/ 8/99	AHT
2-Butanone (MEK)		ND		5	ug/Kg	6/ 8/99	AHT
2-Chloroethyl vinyl ether	<u>-</u>	NDI	1	100	ug/Kg	6/ 8/99	AHT
2-Chlorotoluene			1	5	ug/Kg	6/ 8/99	AHT
2-Hexanone		ND	1	5	ug/Kg	6/ 8/99	AHT
4-Chlorotoluene		ND	1	5	ug/Kg	6/ 8/99	AHT
4-Methyl -2- Pentanone		ND	1	5	ug/Kg	6/ 8/99	AHT
Acetone		ND	1	5	ug/Kg	6/ 8/99	AHT
Acetonitrile		ND	1	5	ug/Kg	6/ 8/99	AHT
Acrolein		ND	1	5	ug/Kg	6/ 8/99	AHT
ACIOICIII		ND	1	200	ug/Kg	6/ 8/99	AHT

Client: City of Oceanside

Matrix: SOLID

Client Sample ID: SLR Sludge - Comp

Date Sampled: 5/17/99
Time Sampled: 0930 to 1215
Sampled By: Plant Operators

Analyte		Result	DF	DLR	Unit	s Date/	Analyst
8260B Volatile Organic Compounds							
Acrylonitrile	ı	NDI	1	5	α/V.α	6/8/00	4 7 700
Allyl chloride		NDI	1	5	ug/Kg		AHT
Benzene		NDI	1	5	ug/Kg		AHT
Benzyl chloride	<u> </u>	NDI	1	5	ug/Kg	6/ 8/99	AHT
Bromobenzene		NDI	1	5	ug/Kg	6/ 8/99	AHT
Bromochloromethane		NDI	1	5	ug/Kg	6/ 8/99	AHT
Bromodichloromethane		ND _I	1	5	ug/Kg	6/ 8/99	AHT
Bromoform		NDI	1	5	ug/Kg	6/ 8/99	AHT
Bromomethane		NDI	1	5	ug/Kg	6/ 8/99	AHT
Carbon Disulfide		NDI	1	5	ug/Kg	6/ 8/99	AHT
Carbon tetrachloride		NDI	1	5	ug/Kg ug/Kg	6/ 8/99	AHT
Chlorobenzene		NDI	1	5	ug/Kg	6/ 8/99	AHT
Chloroethane		NDI	1	5	ug/Kg	6/ 8/99	AHT
Chloroform		NDI	1	5	ug/Kg	6/ 8/99	AHT
Chloromethane		NDI	1	5	ug/Kg	6/ 8/99	AHT
Dibromochloromethane		NDI		5	ug/Kg	6/ 8/99	AHT
Dibromomethane		NDI	1	5	ug/Kg	6/ 8/99	AHT AHT
Dichlorodifluoromethane		11	1	5	ug/Kg	6/ 8/99	AHT
Ethyl benzene		431	1	5	ug/Kg	6/ 8/99	AHT
Ethyl methacrylate		NDI	1	5	ug/Kg	6/ 8/99	AHT
Hexachlorobutadiene		NDI	1	5	ug/Kg ug/Kg	6/ 8/99	AHT
Iodomethane		NDI	1	5	ug/Kg	6/ 8/99	
Isopropylbenzene (Cumene)		NDI	1	5	ug/Kg	6/ 8/99	AHT
Methacrylonitrile		NDI		5	ug/Kg	6/ 8/99	AHT
Methyl methacrylate		NDI	1	5	ug/Kg ug/Kg	6/ 8/99	AHT
Methyl-tert-butylether (MTBE)		NDI		<u>5</u>	ug/Kg		AHT
Methylene chloride		NDI	1	5		6/ 8/99	AHT
Naphthalene		NDI	1		ug/Kg	6/ 8/99	AHT
Pentachloroethane		NDI		5	ug/Kg	6/ 8/99	AHT
Propionitrile			1	5	ug/Kg	6/ 8/99	AHT
Styrene		NDI	1	5		6/ 8/99	AHT
Tetrachloroethene		ND	1	5		6/ 8/99	AHT
1 on domoi oomiono		ND	1	5	ug/Kg	6/ 8/99	AHT

Client: City of Oceanside

Matrix: SOLID

Client Sample ID: SLR Sludge - Comp

Date Sampled: 5/17/99 Time Samp

Sampled:	0930 to 1215
oled By:	Plant Operators

Analyte		Result	DF	DLR	Units	Date/A	nalyst
00(00 1/ 1 / 1/ 0							
8260B Volatile Organic Compounds		601		_	~-	<i></i>	
Toluene		60	1	5	ug/Kg	6/ 8/99	AHT
Trichloroethene		ND	1	5	ug/Kg	6/ 8/99	AHT
Trichlorofluoromethane		ND	1	5	ug/Kg	6/ 8/99	AHT
Vinyl acetate		ND	1	. 50	ug/Kg	6/ 8/99	AHT
Vinyl chloride	·	ND	1	5	ug/Kg	6/ 8/99	AHT
Xylenes, total	l	64	1	5	ug/Kg	6/ 8/99	AHT
cis-1,2-Dichloroethene		ND	1	5	ug/Kg	6/ 8/99	AHT
cis-1,3-Dichloropropene		ND	1	5	ug/Kg	6/ 8/99	AHT
cis-1,4-Dichloro-2-butene		11	1	5	ug/Kg	6/ 8/99	AHT
m and p-Xylene		50	1	5	ug/Kg	6/ 8/99	AHT
n-Butylbenzene		ND	1	5 .	ug/Kg	6/ 8/99	AHT
n-Propylbenzene		11	1	5	ug/Kg	6/ 8/99	AHT
o-Xylene		15	1	5	ug/Kg	6/ 8/99	AHT
p-Isopropyltoluene		ND	1	5	ug/Kg	6/ 8/99	AHT
sec-Butylbenzene		ND	1	5	ug/Kg	6/ 8/99	AHT
tert-Butylbenzene	l	ND	1	5	ug/Kg	6/ 8/99	AHT
trans-1,2-Dichloroethene		ND	1	5	ug/Kg	6/ 8/99	AHT
trans-1,3-Dichloropropene		ND	1	5	ug/Kg	6/ 8/99	AHT
trans-1,4-Dichloro-2-butene		ND	1	5	ug/Kg	6/ 8/99	AHT
8270C Acid/Base/Neutral Extractables							
1,2,4-Trichlorobenzene		ND	3	999.0	ug/Kg	6/ 2/99	DP
1,2-Dichlorobenzene		ND	3	999.0	ug/Kg	6/ 2/99	DP
1,3-Dichlorobenzene	1	ND	3	999.0	ug/Kg	6/ 2/99	DP
1,4-Dichlorobenzene		ND	3	999.0	ug/Kg	6/ 2/99	DP
2,4,5-Trichlorophenol		ND	3	4995.0	ug/Kg	6/ 2/99	DP
2,4,6-Trichlorophenol	ì	ND	3	4995.0	ug/Kg	6/ 2/99	DP
2,4-Dichlorophenol		ND	3	999.0	ug/Kg	6/ 2/99	DP
2,4-Dimethylphenol		ND	3	999.0	ug/Kg	6/ 2/99	DP
2,4-Dinitrophenol	L	NDI	3	4995.0	ug/Kg	6/ 2/99	DP
2,4-Dinitrotoluene		NDI	3	999.0	ug/Kg	6/ 2/99	DP
2,6-Dinitrotoluene	<u> </u>	NDI	3	999.0	ug/Kg	6/ 2/99	DP
-,	<u> </u>				-0.1-0	J. 4 , 7, 7	~ .

Client: City of Oceanside

Matrix: SOLID

Client Sample ID: SLR Sludge - Comp

5/17/99 Date Sampled:

Time Sampled: 0930 to 1215 Sampled By: Plant Operators

Analyte	Result	DF	DLR	Units	Date/A	Analyst
8270C Acid/Base/Neutral Extractables						
2-Chloronaphthalene	ND	3	999.0	ug/Kg	6/ 2/99	DP
2-Chlorophenol	ND	3	999.0	ug/Kg	6/ 2/99	DP
2-Methylnaphthalene	ND	3	999.0	ug/Kg	6/ 2/99	DP
2-Methylphenol	ND	3	999.0	ug/Kg	6/ 2/99	DP
2-Nitroaniline	ND	3	4995.0	ug/Kg	6/ 2/99	DP
2-Nitrophenol	ND	3	999.0	ug/Kg	6/ 2/99	DP
3,3-Dichlorobenzidine	ND	3	999.0	ug/Kg	6/ 2/99	DP
3-Nitroaniline	ND	3	4995.0	ug/Kg	6/ 2/99	DP
4,6-Dinitro-2-methylphenol	ND	3	4995.0	ug/Kg	6/ 2/99	DP
4-Bromophenyl-phenylether	ND	3	999.0	ug/Kg	6/ 2/99	DP
4-Chloro-3-methylphenol	ND	3	999.0	ug/Kg	6/ 2/99	DP
4-Chloroaniline	ND	3	999.0	ug/Kg	6/ 2/99	DP
4-Chlorophenyl-phenylether	ND	3	999.0	ug/Kg	6/ 2/99	DP
4-Methylphenol	ND	3	999.0	ug/Kg	6/ 2/99	DP
4-Nitroaniline	ND	3	4995.0	ug/Kg	6/ 2/99	DP
4-Nitrophenol	ND	3	4995.0	ug/Kg	6/ 2/99	DP
Acenaphthene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Acenaphthylene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Anthracene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Benzo(a)anthracene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Benzo(a)pyrene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Benzo(b)fluoranthene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Benzo(g,h,i)perylene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Benzo(k)fluoranthene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Benzoic Acid	ND	3	999.0	ug/Kg	6/ 2/99	DP
Benzyl alcohol	ND	3	999.0	ug/Kg	6/ 2/99	DP
Butylbenzylphthalate	ND	3	999.0	ug/Kg	6/ 2/99	DP
Chrysene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Di-n-butylphthalate) ND	3	999.0	ug/Kg	6/ 2/99	DP
Di-n-octylphthalate	ND	3	999.0	ug/Kg	6/ 2/99	DP
Dibenz(a,h)anthracene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Dibenzofuran	l NDI	3	999.0	ug/Kg	6/ 2/99	DP

Client: City of Oceanside

Matrix: SOLID

Client Sample ID: SLR Sludge - Comp

Date Sampled: 5/17/99
Time Sampled: 0930 to 1215
Sampled By: Plant Operators

Analyte	Result	DF	DLR	Units	Date/A	nalyst
8270C Acid/Base/Neutral Extractables						
Diethylphthalate	ND	3	999.0	ug/Kg	6/ 2/99	DP
Dimethylphthalate	ND	3	999.0	ug/Kg	6/ 2/99	DP
Fluoranthene	ND	. 3	999.0	ug/Kg	6/ 2/99	DP
Fluorene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Hexachlorobenzene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Hexachlorobutadiene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Hexachlorocyclopentadiene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Hexachloroethane	ND	3	999.0	ug/Kg	6/ 2/99	DP
Indeno(1,2,3-c,d)pyrene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Isophorone	ND	3	999.0	ug/Kg	6/ 2/99	DP
N-Nitroso-di-n-propylamine	ND	3	999.0	ug/Kg	6/ 2/99	DP
N-Nitrosodiphenylamine	ND	3	999.0	ug/Kg	6/ 2/99	DP
Naphthalene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Nitrobenzene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Pentachlorophenol	ND	3	4995.0	ug/Kg	6/ 2/99	DP
Phenanthrene	ND	3	999.0	ug/Kg	6/ 2/99	DP
Phenol	ND	3	999.0	ug/Kg	6/ 2/99	DP
Pyrene	ND	3	999.0	ug/Kg	6/ 2/99	DP
bis(2-Chloroethoxy)methane	ND	3	999.0	ug/Kg	6/ 2/99	DP
bis(2-Chloroethyl)ether	ND	3	999.0	ug/Kg	6/ 2/99	DP
bis(2-Chloroisopropyl) ether	ND	3	999.0	ug/Kg	6/ 2/99	DP
bis(2-Ethylhexyl)phthalate	74	3	999.0	ug/Kg	6/ 2/99	DP

8310 PAH's by HPLC

Acenaphthene	ND	1	0.5	mg/Kg	5/19/99	LS
Acenaphthylene	ND	1	0.5	mg/Kg	5/19/99	LS
Anthracene	ND	1	0.05	mg/Kg	5/19/99	LS
Benzo(a)anthracene	ND	1	0.05	mg/Kg	5/19/99	LS
Benzo(a)pyrene	ND	1	0.05	mg/Kg	5/19/99	LS
Benzo(b)fluoranthene	ND	1	0.05	mg/Kg	5/19/99	LS
Benzo(ghi)perylene	l ND	1	0.05	mg/Kg	5/19/99	LS

Client: City of Oceanside

Matrix: SOLID

Client Sample ID: SLR Sludge - Comp

Date Sampled: 5/17/99

Time Sampled: 0930 to 1215

Sampled By: Plant Operators

Analyte	Result	DF	DLR	Units Date/A	nalyst
10 PAH's by HPLC					
Benzo(k)fluoranthene	l NDI	1	0.05	mg/Kg 5/19/99	LS
Chrysene	l NDI	1	0.05	mg/Kg 5/19/99	LS
Dibenzo(a,h)anthracene	ND	1	0.05	mg/Kg 5/19/99	LS
Fluoranthene	NDI	1	0.05	mg/Kg 5/19/99	LS
Fluorene	ND	1	0.15	mg/Kg 5/19/99	LS
Indeno(1,2,3-cd)pyrene	l NDI	1	0.05	mg/Kg 5/19/99	LS
Naphthalene	NDI	1	0.5	mg/Kg 5/19/99	LS
Phenanthrene	NDI	1	0.1	mg/Kg 5/19/99	LS
Pyrene	ND	1	0.05	mg/Kg 5/19/99	LS
0 Radioactivity - Gross Alpha and Beta					
Radioactivity - Beta	1.1+/-0.1	1	1.0	pCi/g 6/ 1/99	QP
Radioactivity - Gross Alpha	1.1+/-0.2	1	0.5	pCi/g 6/ 1/99	QP

FAX 714/538-1209

CLIENT City of Oceanside

(3869)

LAB REQUEST 43840

ATTN: Mary Gonzales

Oceanside, CA 92054

REPORTED 11/16/99

Water Utilities Department Lab 3950 North River Road

RECEIVED 10/15/99

PROJECT P.O. #20005

SUBMITTER

Client

COMMENTS

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

> Order No. 147850

147851

Client Sample Identification

SLR Sludge Cake LS Sludge Cake

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORATORIES by

Webber Vice President

NOTE: Unless notified in writing, all samples will be discaraed by appropriate disposal protocol 30 days from adle reported

The reports of the Associated Laboratories are confidential property of our clients may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental

City of Oceanside Water Utilities Department Laboratory San Luis Rey Wastewater Treatment Plant 3950 North River Road Oceanside, California 92054

43840

phone: 760-966-8772 fax: 760-966-8770

To: Associated Laboratories

P.O. # 20005

Date: October 14, 1999

Sample Description	Date/Time Sampled	Analyze for:
SLR Sludge cake 12 discrete grabs collected during hrs operation & composited in lab LS Sludge Cake 12 discrete grabs collected during hrs operation & composited in lab	10/13/99 from 0900 to 1420 hrs 10/13/99 @ 1800 hrs to 10/14/99 @ 0500 hrs	Analyze both samples for: metals - arsenic, cadmium chromium copper, lead, mercury, nickel, selenium silver, zinc, beryllium, antimony, thallium, molybdenum ammonia SM 4500-CN C&E - cyanide EPA 603 - acrolein/acrylonitrile EPA 608/8080 - pest/pcb EPA 610/8310 - PAHs EPA 624/8240 - volatiles EPA 625/8270 - semi-volatiles
Relinquished by:	Relinquished by:	
Mare Comple	1155	
(Signature) (MARY GONZAIES	(Time) (Signature)	(Time)
(Printed name)	10/14/99 (Date) (Printed name)	(Date)
Received by: (Signature) (Printed name)	(Time) Geneture)	DEMPSEY 10-15-99 (Date)

Client: City of Oceanside

Matrix: SOLID

Client Sample ID: SLR Sludge Cake

Date Sampled: 10/13/99

Sample Description: 12 Discrete Grabs Collected 10/13/99 from 0900hrs. to 1420hrs.

Time Sampled: 09:00 Sampled By:

Analyte Result DF DLR Units Date/Analyst 245.5 Mercury in Solids by Manual Cold Vapor Mercury 0.23 1 0.12 mg/Kg 10/18/99 MJ 335.2 Total Cyanide Cyanide 0.5 0.5 1 mg/Kg 10/19/99 JA 350.2 Ammonia by Distillation Ammonia-N 2926 1 5.0 10/18/99 mg/Kg DK 6010B ICP Metals - Solid/Liquid Antimony 3.5 1.44 1 mg/Kg 10/29/99 MT Arsenic 0.936 1 0.20 mg/Kg 10/29/99 MT Beryllium 0.10 ND 1 mg/Kg 10/29/99 MT Cadmium 0.584 1 0.20 mg/Kg 10/29/99 MT Chromium 0.59 3.05 1 mg/Kg 10/29/99 MT Copper 35.3 0.22 1 mg/Kg 10/29/99 MT Lead 1 0.25 3.2 mg/Kg 10/29/99 MT Molybdenum ND 0.65 1 mg/Kg 10/29/99 MT Nickel 1 3.86 0.68 mg/Kg 10/29/99 MT Selenium 1.66 1 0.37 10/29/99 MT mg/Kg Silver 4.16 1 0.50 mg/Kg 10/29/99 MT Thallium 0.24 ND 1 mg/Kg 10/29/99 MT Zinc 91.5 1 0.34 mg/Kg 10/29/99 MT 8081A - Organochlorine Pesticides by GC Aldrin ND 5 0.01 mg/Kg 10/21/99 LS Alpha BHC ND 5 0.01 mg/Kg 10/21/99 LS Beta BHC 5 ND 0.015 LS mg/Kg 10/21/99 Chlordane ND 5 0.04 mg/Kg 10/21/99 LS DDD ND 5 0.02 mg/Kg 10/21/99 LS DDE ND 5 0.015 mg/Kg 10/21/99 LS DDT ND 5 10/21/99 LS 0.015 mg/Kg Delta BHC 5 ND 0.025 LS mg/Kg 10/21/99 Dieldrin ND 5 0.015 mg/Kg 10/21/99 LS Endosulfan I 5 ND 0.02 mg/Kg 10/21/99 LS

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

LS

10/21/99

mg/Kg

Endosulfan II

5

0.015

ND

Order #: 147850 Matrix: SOLID

Client: City of Oceanside

Client Sample ID: SLR Sludge Cake

Date Sampled: 10/13/99 Time Sampled: 09:00

Sample Description: 12 Discrete Grabs Collected 10/13/99 from 0900hrs. to 1420hrs.

Sampled By:

Analyte Result DF DLR Units Date/Analyst 8081A - Organochlorine Pesticides by GC Endosulfan sulfate ND 5 0.015 mg/Kg 10/21/99 LS Endrin ND 5 0.02 mg/Kg 10/21/99 LS Endrin aldehyde ND 5 0.02 mg/Kg 10/21/99 LS Heptachlor ND 5 0.01 10/21/99 mg/Kg LS Heptachlor epoxide ND 5 0.015 mg/Kg 10/21/99 LS Lindane ND 5 0.015 mg/Kg 10/21/99 LS Methoxychlor ND 5 0.125 mg/Kg LS 10/21/99 Toxaphene ND 5 1.2 mg/Kg 10/21/99 LS 8082 - Polychlorinated Biphenyls (PCBs) by GC PCB-1016 ND 5 0.165 mg/Kg 10/22/99 LS PCB-1221 ND 5 0.3 mg/Kg 10/22/99 LS PCB-1232 ND 5 0.2 mg/Kg 10/22/99 LS PCB-1242 ND 5 0.1 mg/Kg 10/22/99 LS PCB-1248

5

5

5

0.4

0.05

0.125

mg/Kg

mg/Kg

mg/Kg

10/22/99

10/22/99

10/22/99

LS

LS

LS

ND

NDI

ND

8260B Volatile Organic Compounds

PCB-1254

PCB-1260

1110 T 11						
1,1,1,2-Tetrachloroethane	ND ND	10	50.0	ug/Kg	10/20/99	DP
1,1,1-Trichloroethane	ND	10	50.0	ug/Kg	10/20/99	DP
1,1,2,2-Tetrachloroethane	ND	10	50.0	ug/Kg	10/20/99	DP
1,1,2-Trichloroethane	ND	10	50.0	ug/Kg	10/20/99	DP
1,1,2-Trichlorotrifluoroethane	ND	10	50.0	ug/Kg	10/20/99	DP
1,1-Dichloroethane	ND	10	50.0	ug/Kg	10/20/99	DP
1,1-Dichloroethene	ND	10	50.0	ug/Kg	10/20/99	DP
1,1-Dichloropropene	ND	10	50.0	ug/Kg	10/20/99	DP
1,2,3-Trichlorobenzene	ND	10	50.0	ug/Kg	10/20/99	DP
1,2,3-Trichloropropane	ND	10	50.0	ug/Kg	10/20/99	DP
1,2,4-Trichlorobenzene	ND	10	50.0	ug/Kg	10/20/99	DP
1,2,4-Trimethylbenzene	ND	10	50.0	ug/Kg	10/20/99	DP
1,2-Dibromo-3-chloropropane	ND	10	50.0	ug/Kg	10/20/99	DP
1,2-Dibromoethane	NDI	10	50.0	ug/Kg	10/20/99	DP
1,2-Dichlorobenzene	ND	10	50.0	ug/Kg	10/20/99	DP
1,2-Dichloroethane	NDI	10	50.0	ug/Kg	10/20/99	DP
1,2-Dichloropropane	ND	10	50.0	ug/Kg	10/20/99	DP
				- <i>-</i>		*

Client: City of Oceanside

Matrix: SOLID

Client Sample ID: SLR Sludge Cake

Date Sampled: 10/13/99 Time Sampled: 09:00 Sample Description: 12 Discrete Grabs Collected 10/13/99 from 0900hrs. to 1420hrs.

Sampled By:

Analyte	Result	DF	DLR	Units	Date/Ar	alys
Volatile Organic Compounds						
1,3,5-Trimethylbenzene	l NDI	10	50.0	ug/Kg	10/20/99	DP
1,3-Dichlorobenzene	l NDI	10	50.0	ug/Kg	10/20/99	DP
1,3-Dichloropropane	NDI	10	50.0	ug/Kg	10/20/99	DP
1,4-Dichlorobenzene	l ND	10	50.0	ug/Kg	10/20/99	DP
1,4-Dioxane	ND	10	2000.0	ug/Kg	10/20/99	DP
1-Chlorohexane	ND	10	50.0	ug/Kg	10/20/99	DP
2,2-Dichloropropane	ND	10	50.0	ug/Kg	10/20/99	DP
2-Butanone (MEK)	ND ND	10	1000.0	ug/Kg	10/20/99	DP
2-Chloroethyl vinyl ether	ND	10	50.0	ug/Kg	10/20/99	DP
2-Chlorotoluene	ND	10	50.0	ug/Kg	10/20/99	DP
2-Hexanone	ND	10	50.0	ug/Kg	10/20/99	DP
4-Chlorotoluene	ND	10	50.0	ug/Kg	10/20/99	DP
4-Methyl -2- Pentanone	ND	10	50.0	ug/Kg	10/20/99	DP
Acetone	ND	10	50.0	ug/Kg	10/20/99	DF
Acetonitrile	ND	10	50.0	ug/Kg	10/20/99	DF
Acrolein	ND	10	2000.0	ug/Kg	10/20/99	DF
Acrylonitrile	ND	10	50.0	ug/Kg	10/20/99	DF
Allyl chloride	ND	10	50.0	ug/Kg	10/20/99	DF
Benzene	ND	10	50.0	ug/Kg	10/20/99	DF
Benzyl chloride	ND	10	50.0	ug/Kg	10/20/99	DF
Bromobenzene	ND	10	50.0	ug/Kg	10/20/99	DF
Bromochloromethane	ND	10	50.0	ug/Kg	10/20/99	DF
Bromodichloromethane	ND	10	50.0	ug/Kg	10/20/99	DF
Bromoform	ND	10	50.0	ug/Kg	10/20/99	DF
Bromomethane	ND	10	50.0	ug/Kg	10/20/99	DF
Carbon Disulfide	ND	10	50.0	ug/Kg	10/20/99	DP
Carbon tetrachloride	ND	10	50.0	ug/Kg	10/20/99	DP
Chlorobenzene	ND	10	50.0	ug/Kg	10/20/99	DP
Chloroethane	ND	10	50.0	ug/Kg	10/20/99	DP
Chloroform	ND	10	50.0	ug/Kg	10/20/99	DP
Chloromethane	ND	10	50.0	ug/Kg	10/20/99	DP
Dibromochloromethane	ND	10	50.0	ug/Kg	10/20/99	DF
Dibromomethane	ND	10	50.0	ug/Kg	10/20/99	DP
Dichlorodifluoromethane	ND	10	50.0	ug/Kg	10/20/99	DP
Ethyl benzene	223	10	50.0	ug/Kg	10/20/99	DP
Ethyl methacrylate	ND	10	50.0	ug/Kg	10/20/99	DP
Hexachlorobutadiene	ND	10	50.0	ug/Kg	10/20/99	DP
Iodomethane	NDI	10	50.0	ug/Kg	10/20/99	DP

Matrix: SOLID

Client: City of Oceanside

Client Sample ID: SLR Sludge Cake

Date Sampled: 10/13/99 Time Sampled: 09:00 Sample Description: 12 Discrete Grabs Collected 10/13/99 from 0900hrs. to 1420hrs.

Sampled By:

Analyte	Result	DF	DLR	Units	Date/A	nalyst
60B Volatile Organic Compounds						
Isopropylbenzene (Cumene)	l NDI	10	50.0	ug/Kg	10/20/99	DP
Methacrylonitrile	NDI	10	50.0	ug/Kg	10/20/99	DP
Methyl methacrylate	NDI	10	50.0	ug/Kg	10/20/99	DP
Methyl-tert-butylether (MTBE)	NDI	10	50.0	ug/Kg	10/20/99	DP
Methylene chloride	i NDI	10	50.0	ug/Kg	10/20/99	DP
Naphthalene	l NDI	10	50.0	ug/Kg	10/20/99	DP
Pentachloroethane	NDI	10	50.0	ug/Kg	10/20/99	DP
Propionitrile	l NDI	10	50.0	ug/Kg	10/20/99	DP
Styrene	NDI	10	50.0	ug/Kg	10/20/99	DP
Tetrachloroethene	NDI	10	50.0	ug/Kg	10/20/99	DP
Toluene	1 134	10	50.0	ug/Kg	10/20/99	DP
Trichloroethene	ND	10	50.0	ug/Kg	10/20/99	DP
Trichlorofluoromethane	ND	10	50.0	ug/Kg	10/20/99	DP
Vinyl acetate	l ND	10	500.0	ug/Kg	10/20/99	DP
Vinyl chloride	ND	10	50.0	ug/Kg	10/20/99	DP
Xylenes, total	ND	10	50.0	ug/Kg	10/20/99	DP
cis-1,2-Dichloroethene	ND	10	50.0	ug/Kg	10/20/99	DP
cis-1,3-Dichloropropene	NDI	10	50.0	ug/Kg	10/20/99	DP
cis-1,4-Dichloro-2-butene	ND	10	50.0	ug/Kg	10/20/99	DP
m and p-Xylene	ND	10	50.0	ug/Kg	10/20/99	DP
n-Butylbenzene	ND	10	50.0	ug/Kg	10/20/99	DP
n-Propylbenzene	NDI	10	50.0	ug/Kg	10/20/99	DP
o-Xylene	ND	10	50.0	ug/Kg	10/20/99	DP
p-Isopropyltoluene	NDI	10	50.0	ug/Kg	10/20/99	DP
sec-Butylbenzene	ND	10	50.0	ug/Kg	10/20/99	DP
tert-Butylbenzene	NDI	10	50.0	ug/Kg	10/20/99	DP
trans-1,2-Dichloroethene	NDI	10	50.0	ug/Kg	10/20/99	DP
trans-1,3-Dichloropropene	NDI	10	50.0	ug/Kg	10/20/99	DP
trans-1,4-Dichloro-2-butene	NDI	10	50.0	ug/Kg	10/20/99	DP
OC Acid/Base/Neutral Extractables				45/115	10/20/99	
1,2,4-Trichlorobenzene	ND	1	333	ug/Kg	10/28/99	DP
1,2-Dichlorobenzene	ND	1	333	ug/Kg	10/28/99	DP
1,3-Dichlorobenzene	ND	1	333	ug/Kg	10/28/99	DP
1,4-Dichlorobenzene	ND	1	333	ug/Kg	10/28/99	DP
2.4.5 Trichlorenhonel	1 3751			~-		

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

DP

DP

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

ND

ND

1

1665

1665

ug/Kg

ug/Kg

10/28/99

10/28/99

Order #: 147850
Matrix: SOLID

850 Client: City of Oceanside

Client Sample ID: SLR Sludge Cake

Date Sampled: 10/13/99

Sample Description: 12 Discrete Grabs Collected 10/13/99 from 0900hrs. to 1420hrs.

Time Sampled: 09:00 Sampled By:

~p.:	-,-						
	Analyte	Result	DF	DLR	Units	Date/A	nalyst
8270C	Acid/Base/Neutral Extractables						
	2,4-Dichlorophenol	l NDI	1	333	ug/Kg	10/28/99	DP
-	2,4-Dimethylphenol	NDI	1	333	ug/Kg	10/28/99	DP
-	2,4-Dinitrophenol	NDI	1	1665	ug/Kg	10/28/99	DP
-	2,4-Dinitrotoluene	NDI	1	333	ug/Kg	10/28/99	DP
-	2,6-Dinitrotoluene	NDI	1	333	ug/Kg	10/28/99	DP
-	2-Chloronaphthalene	NDI	1	333	ug/Kg	10/28/99	DP
-	2-Chlorophenol	NDI	1	333	ug/Kg	10/28/99	DP
-	2-Methylnaphthalene	l NDI	1	333	ug/Kg	10/28/99	DP
-	2-Methylphenol	l NDI	1	333	ug/Kg ug/Kg	10/28/99	DP DP
-	2-Nitroaniline	NDI	1	1665	ug/Kg	10/28/99	DP DP
-	2-Nitrophenol	NDI	1	333	ug/Kg ug/Kg	10/28/99	DP
-	3,3-Dichlorobenzidine	NDI	1	333	ug/Kg	10/28/99	DP
-	3-Nitroaniline	NDI	1	1665	ug/Kg	10/28/99	DP
-	4,6-Dinitro-2-methylphenol	NDI	<u>-</u>	1665	ug/Kg	10/28/99	DP
-	4-Bromophenyl-phenylether	NDI	1	333	ug/Kg	10/28/99	DP
_	4-Chloro-3-methylphenol	NDI	<u>_</u> 1	333	ug/Kg	10/28/99	DP
-	4-Chloroaniline	NDI	1	333	ug/Kg	10/28/99	DP
-	4-Chlorophenyl-phenylether	NDI	1	333	ug/Kg	10/28/99	DP
-	4-Methylphenol	l NDI	1	333	ug/Kg	10/28/99	DP
-	4-Nitroaniline	NDI	1	1665	ug/Kg	10/28/99	DP
-	4-Nitrophenol	ND		1665	ug/Kg	10/28/99	DP
-	Acenaphthene	l NDI	1	333	ug/Kg	10/28/99	DP
_	Acenaphthylene	l NDI	1	333	ug/Kg	10/28/99	DP
-	Anthracene	l ND	1	333	ug/Kg	10/28/99	DP
-	Benzo(a)anthracene	l ND	1	333	ug/Kg	10/28/99	DP
-	Benzo(a)pyrene	ND	1	333	ug/Kg	10/28/99	DP
-	Benzo(b)fluoranthene	l ND	1	333	ug/Kg	10/28/99	DP
-	Benzo(g,h,i)perylene	NDI	1	333	ug/Kg	10/28/99	DP
_	Benzo(k)fluoranthene	l NDI	1	333	ug/Kg	10/28/99	DP
_	Benzoic Acid	NDI	1	333	ug/Kg	10/28/99	DP
_	Benzyl alcohol	NDI	1	333	ug/Kg	10/28/99	DP
	Butylbenzylphthalate	NDI	1	333	ug/Kg	10/28/99	DP
_	Chrysene	l NDI	1	333	ug/Kg	10/28/99	DP
_	Di-n-butylphthalate	l NDI	1	333	ug/Kg	10/28/99	DP
_	Di-n-octylphthalate	ND	1	333	ug/Kg	10/28/99	DP
-	Dibenz(a,h)anthracene	NDI	1	333	ug/Kg	10/28/99	DP
-	Dibenzofuran	l NDI	1	333	ug/Kg	10/28/99	DP
	Diethylphthalate	ND	1	333	ug/Kg	10/28/99	DF DF
_	~ 1	1	-	555	~~ ~~	10,20,77	<u> </u>

Matrix: SOLID

Client: City of Oceanside

Client Sample ID: SLR Sludge Cake

Date Sampled: 10/13/99 Time Sampled: 09:00

Analyte

Sampled By:

Sample Description: 12 Discrete Grabs Collected 10/13/99 from 0900hrs. to 1420hrs.

Result

DF

DLR

Units Date/Analyst

8270C

id/Base/Neutral Extractables						
Dimethylphthalate	ND	1	333	ug/Kg	10/28/99	DF
Fluoranthene	ND	1	333	ug/Kg	10/28/99	DF
Fluorene	ND	1	333	ug/Kg	10/28/99	DI
Hexachlorobenzene	ND	1	333	ug/Kg	10/28/99	DI
Hexachlorobutadiene	ND	1	333	ug/Kg	10/28/99	DI
Hexachlorocyclopentadiene	ND	1	333	ug/Kg	10/28/99	DF
Hexachloroethane	ND	1	333	ug/Kg	10/28/99	DI
Indeno(1,2,3-c,d)pyrene	ND	1	333	ug/Kg	10/28/99	DI
Isophorone	ND	1	333	ug/Kg	10/28/99	DI
N-Nitroso-di-n-propylamine	ND	1	333	ug/Kg	10/28/99	DI
N-Nitrosodiphenylamine	ND	1	333	ug/Kg	10/28/99	DF
Naphthalene	ND	1	333	ug/Kg	10/28/99	DF
Nitrobenzene	ND	1	333	ug/Kg	10/28/99	DF
Pentachlorophenol	ND	. 1	1665	ug/Kg	10/28/99	DF
Phenanthrene	ND	1	333	ug/Kg	10/28/99	DF
Phenol	ND	1	333	ug/Kg	10/28/99	DF
Pyrene	ND	1	333	ug/Kg	10/28/99	DF
bis(2-Chloroethoxy)methane	ND	1	333	ug/Kg	10/28/99	DF
bis(2-Chloroethyl)ether	ND	1	333	ug/Kg	10/28/99	DF
bis(2-Chloroisopropyl) ether	ND	1	333	ug/Kg	10/28/99	DF
bis(2-Ethylhexyl)phthalate	5560	1	333	ug/Kg	10/28/99	DF

8310 PAH's by HPLC

ND ND ND		1.0	mg/Kg mg/Kg	11/4/99	LS
<u> </u>	2	1.0	ma/Ka		
l ND			1115/115	11/4/99	LS
l .	2	0.1	mg/Kg	11/4/99	LS
ND	2	0.1	mg/Kg	11/4/99	LS
ND	2	0.1	mg/Kg	11/4/99	LS
ND	2	0.1	mg/Kg	11/4/99	LS
ND	2	0.1	mg/Kg	11/4/99	LS
ND	2	0.1	mg/Kg	11/4/99	LS
ND	2	0.1	mg/Kg	11/4/99	LS
ND	2	0.1	mg/Kg	11/4/99	LS
ND	2	0.1	mg/Kg	11/4/99	LS
ND	2	0.3	mg/Kg	11/4/99	LS
ND	2	0.1	mg/Kg	11/4/99	LS
ND	2	1.0	mg/Kg	11/4/99	LS
	ND ND ND ND ND ND ND ND ND	ND 2 ND 2 ND 2 ND 2 ND 2 ND 2 ND 2 ND 2 ND 2 ND 2 ND 2 ND 2 ND 2 ND 2 ND 2 ND 2	ND 2 0.1 ND 2 0.1 ND 2 0.1 ND 2 0.1 ND 2 0.1 ND 2 0.1 ND 2 0.1 ND 2 0.1 ND 2 0.1 ND 2 0.3 ND 2 0.1 ND 2 0.3 ND 2 0.1 ND	ND 2	ND 2

Client: City of Oceanside

Matrix: SOLID

Client Sample ID: SLR Sludge Cake

Date Sampled: 10/13/99

Sample Description: 12 Discrete Grabs Collected 10/13/99 from 0900hrs. to 1420hrs.

Time Sampled: 09:00 Sampled By:

	Analyte	Result	DF	DLR	Units Date/Analyst	
<u>8310 1</u>	PAH's by HPLC					
	Phenanthrene	ND	2	0.2	mg/Kg 11/4/99 LS	
	Pyrene ,	ND	2	0.1	mg/Kg 11/4/99 LS	-

City of Oceanside SEWAGE SLUDGE ANNUAL REPORT - 1999

Location: San Luis Rey Wastewater Treatment Plant – Continued:

Toxicity Characterization Leaching Procedure (TCLP) Analyses: See following pages for results of testing for TCLP inorganics, pesticides, herbicides, volatiles and semivolatiles on a sample taken on May 17, 1999. All data is well within limits. The sludge is not hazardous.

Order #: 123220
Matrix: SOLID

Client: City of Oceanside
Client Sample ID: SLR Cake

Date Sampled: 5/17/99

Time Sampled: 0930 to 1215 Sampled By: Plant Operators

	Result	DF	DLR	Unit	s Date/A	naly
1311/245.1 Mercury TCLP						
Mercury TCLP	NDI	1	0.004	mg/L	5/27/99	NK
1311/6010 TCLP (ICP Metals)						
Barium TCLP	1.80	<u>-</u>	0.005	mg/L	5/28/99	M7
Cadmium TCLP	NDI	1	0.004	mg/L	5/28/99	M
Chromium TCLP	0.030	<u>-</u>	0.005	mg/L	5/28/99	M7
Silver TCLP	ND	1	0.005	mg/L	5/28/99	M
311/7060A Arsenic TCLP by GFAA						
Arsenic TCLP	NDJ	10	0.01	mg/L	5/28/99	МТ
311/7420 TCLP Lead by AA					• • • •	
Lead TCLP	NDJ		0.1	/T	<i>5/27/00</i>	
to the second se			0.1	mg/L	5/26/99	MT
311/7740 TCLP Selenium by GFAA						
and the same and t						
Selenium TCLP	ND	10	0.01	mg/L	5/28/99	MT
Selenium TCLP 311/8080 TCLP Compounds Only	ND	10	0.01	mg/L	5/28/99	MT
311/8080 TCLP Compounds Only	ND		0.01	mg/L	6/ 6/99	DY
Chlorodane TCLP	ND ND		0.01 0.002	mg/L mg/L	6/ 6/99 6/ 6/99	DY DY
Chlorodane TCLP Endrin TCLP	ND ND ND		0.01 0.002 0.001	mg/L mg/L mg/L	6/ 6/99 6/ 6/99 6/ 6/99	DY DY DY
Chlorodane TCLP Endrin TCLP Heptachlor TCLP	ND ND ND ND		0.01 0.002 0.001 0.001	mg/L mg/L mg/L	6/ 6/99 6/ 6/99 6/ 6/99	DY DY DY
Chlorodane TCLP Endrin TCLP Heptachlor TCLP Heptachlor epoxide TCLP	ND ND ND ND ND		0.01 0.002 0.001 0.001	mg/L mg/L mg/L mg/L	6/ 6/99 6/ 6/99 6/ 6/99 6/ 6/99	DY DY DY DY
Chlorodane TCLP Endrin TCLP Heptachlor TCLP Heptachlor epoxide TCLP Lindane TCLP	ND ND ND ND		0.01 0.002 0.001 0.001	mg/L mg/L mg/L	6/ 6/99 6/ 6/99 6/ 6/99	DY DY DY
Chlorodane TCLP Endrin TCLP Heptachlor TCLP Heptachlor epoxide TCLP Lindane TCLP Methoxychlor TCLP Toxaphene TCLP	ND ND ND ND ND ND ND		0.01 0.002 0.001 0.001 0.001	mg/L mg/L mg/L mg/L mg/L	6/ 6/99 6/ 6/99 6/ 6/99 6/ 6/99 6/ 6/99	DY DY DY DY DY DY
Chlorodane TCLP Endrin TCLP Heptachlor TCLP Heptachlor epoxide TCLP Lindane TCLP Methoxychlor TCLP Toxaphene TCLP	ND ND ND ND ND ND ND		0.01 0.002 0.001 0.001 0.001 0.05 0.01	mg/L mg/L mg/L mg/L mg/L mg/L	6/ 6/99 6/ 6/99 6/ 6/99 6/ 6/99 6/ 6/99 6/ 6/99	DY DY DY DY DY DY DY
Chlorodane TCLP Endrin TCLP Heptachlor TCLP Heptachlor epoxide TCLP Lindane TCLP Methoxychlor TCLP Toxaphene TCLP	ND ND ND ND ND ND ND		0.01 0.002 0.001 0.001 0.001	mg/L mg/L mg/L mg/L mg/L	6/ 6/99 6/ 6/99 6/ 6/99 6/ 6/99 6/ 6/99	DY DY DY DY DY DY

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

Order #: 123220 Matrix: SOLID Client: City of Oceanside
Client Sample ID: SLR Cake

Date Sampled: 5/17/99

Time Sampled: 0930 to 1215 Sampled By: Plant Operators

Analyte		Result	DF	DLR	Units Date/Analyst		
11/8260 TC	CLP Compounds Only						
1,1	Dichloroethylene TCLP	ND	10	0.05	mg/L	6/ 2/99	AHT
1,2	Dichloroethane TCLP	NDI	10	0.05	mg/L	6/ 2/99	AHT
Ber	nzene TCLP	NDI	10	0.05	mg/L	6/ 2/99	AHT
Car	bon Tetrachloride TCLP	ND	10	0.05	mg/L	6/ 2/99	AHT
Chl	lorobenzene TCLP	NDI	10	0.05	mg/L	6/ 2/99	AHT
Chl	loroform TCLP	ND	10	0.05	mg/L	6/ 2/99	AHT
Me	thylethylketone TCLP	13.8	10	0.05	mg/L	6/ 2/99	AHT
Tet	rachloroethylene TCLP	l NDI	10	0.05	mg/L	6/ 2/99	AHT
Tric	chloroethylené TCLP	NDI	10	0.05	mg/L	6/ 2/99	AHT
Vin	yl Chloride TCLP	l NDI	10	0.05	mg/L	6/ 2/99	AHT
	LP Compounds Only						
11/8270 TC	LP Compounds Only						
	LP Compounds Only Dichlorobenzene TCLP	ND	4	0.04	mg/L	6/10/99	 DP
1,4		. ND	4	0.04		6/10/99 6/10/99	DP DP
1,4 2,4	Dichlorobenzene TCLP				mg/L mg/L mg/L		· + ·
1,4 2,4 2,4,	Dichlorobenzene TCLP Dinitrotoluene TCLP	ND	4	0.2	mg/L mg/L	6/10/99	DP
1,4 2,4 2,4, 2,4,	Dichlorobenzene TCLP Dinitrotoluene TCLP 5 Trichlorophenol TCLP	ND ND	4	0.2	mg/L mg/L mg/L	6/10/99 6/10/99	DP DP
1,4 2,4 2,4, 2,4, Cres	Dichlorobenzene TCLP Dinitrotoluene TCLP 5 Trichlorophenol TCLP 6 Trichlorophenol TCLP	ND ND ND	4 4	0.2 0.2 0.2	mg/L mg/L mg/L mg/L	6/10/99 6/10/99 6/10/99 6/10/99	DP DP
1,4 2,4 2,4, 2,4, Cres	Dichlorobenzene TCLP Dinitrotoluene TCLP 5 Trichlorophenol TCLP 6 Trichlorophenol TCLP sol TCLP	ND ND ND ND	4 4 4	0.2 0.2 0.2 0.04	mg/L mg/L mg/L mg/L mg/L	6/10/99 6/10/99 6/10/99	DP DP DP
1,4 2,4 2,4, 2,4, Cres Hex	Dichlorobenzene TCLP Dinitrotoluene TCLP 5 Trichlorophenol TCLP 6 Trichlorophenol TCLP sol TCLP cachloro-1-3-butadiene TCLP	ND ND ND ND	4 4 4 4	0.2 0.2 0.2 0.04 0.04	mg/L mg/L mg/L mg/L mg/L mg/L	6/10/99 6/10/99 6/10/99 6/10/99	DP DP DP DP
1,4 2,4 2,4, 2,4, Cres Hex Hex	Dichlorobenzene TCLP Dinitrotoluene TCLP 5 Trichlorophenol TCLP 6 Trichlorophenol TCLP sol TCLP cachloro-1-3-butadiene TCLP	ND ND ND ND ND ND ND	4 4 4 4 4	0.2 0.2 0.2 0.04 0.04 0.04	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	6/10/99 6/10/99 6/10/99 6/10/99 6/10/99 6/10/99	DP DP DP DP DP DP
1,4 2,4 2,4, 2,4, Cres Hex Hex Nitr	Dichlorobenzene TCLP Dinitrotoluene TCLP 5 Trichlorophenol TCLP 6 Trichlorophenol TCLP sol TCLP tachloro-1-3-butadiene TCLP tachlorobenzene TCLP	ND ND ND ND ND ND	4 4 4 4 4 4	0.2 0.2 0.2 0.04 0.04 0.04 0.04	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	6/10/99 6/10/99 6/10/99 6/10/99 6/10/99 6/10/99 6/10/99	DP DP DP DP DP DP DP
1,4 2,4 2,4, 2,4, Cres Hex Hex Pent	Dichlorobenzene TCLP Dinitrotoluene TCLP 5 Trichlorophenol TCLP 6 Trichlorophenol TCLP sol TCLP cachloro-1-3-butadiene TCLP cachlorobenzene TCLP cachloroethane TCLP	ND ND ND ND ND ND ND ND ND ND	4 4 4 4 4 4 4	0.2 0.2 0.2 0.04 0.04 0.04 0.04 0.04 0.2	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	6/10/99 6/10/99 6/10/99 6/10/99 6/10/99 6/10/99 6/10/99	DP DP DP DP DP DP DP DP
1,4 2,4 2,4, 2,4, Cres Hex Hex Pent	Dichlorobenzene TCLP Dinitrotoluene TCLP 5 Trichlorophenol TCLP 6 Trichlorophenol TCLP sol TCLP cachloro-1-3-butadiene TCLP cachlorobenzene TCLP cachloroethane TCLP cobenzene TCLP tachlorophenol TCLP	ND ND ND ND ND ND ND ND ND ND ND ND	4 4 4 4 4 4	0.2 0.2 0.2 0.04 0.04 0.04 0.04 0.04	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	6/10/99 6/10/99 6/10/99 6/10/99 6/10/99 6/10/99 6/10/99 6/10/99	DP DP DP DP DP DP DP DP
1,4 2,4 2,4, 2,4, Cres Hex Hex Pent Pyri m,p-	Dichlorobenzene TCLP Dinitrotoluene TCLP 5 Trichlorophenol TCLP 6 Trichlorophenol TCLP sol TCLP tachloro-1-3-butadiene TCLP tachlorobenzene TCLP tachloroethane TCLP tachlorophenol TCLP	ND ND	4 4 4 4 4 4 4 4	0.2 0.2 0.04 0.04 0.04 0.04 0.04 0.2 2.0 0.04	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	6/10/99 6/10/99 6/10/99 6/10/99 6/10/99 6/10/99 6/10/99 6/10/99 6/10/99	DP DP DP DP DP DP DP DP DP
1,4 2,4 2,4, 2,4, Cres Hex Hex Pent Pyri m,p- m-C	Dichlorobenzene TCLP Dinitrotoluene TCLP 5 Trichlorophenol TCLP 6 Trichlorophenol TCLP sol TCLP cachloro-1-3-butadiene TCLP cachlorobenzene TCLP cachloroethane TCLP cachlorophenol TCLP cachlorophenol TCLP cachlorophenol TCLP cachlorophenol TCLP cachlorophenol TCLP	ND ND ND ND ND ND ND ND ND ND ND ND	4 4 4 4 4 4 4 4	0.2 0.2 0.2 0.04 0.04 0.04 0.04 0.04 0.2 2.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	6/10/99 6/10/99 6/10/99 6/10/99 6/10/99 6/10/99 6/10/99 6/10/99	DP DP DP DP DP DP DP DP

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

City of Oceanside SEWAGE SLUDGE ANNUAL REPORT - 1999

Location: San Luis Rey Wastewater Treatment Plant – Continued:

RPI Bio Gro Certifications for 1999: See following pages for monthly certifications that the management practices in §503.14 and site restrictions in §503.32(b)(5) have been for each site on which bulk sewage is applied.

"I certify, under penalty of law, that the management practices in §503.14 and the site restrictions in §503.32(b)(5) have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices and site restrictions have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Project(s):

Oceanside, CA San Luis Rev WWTP

Reporting Period:

January 1999

Name:

Ken Lewis, P.E.

Operations Manager

Signature:

Name:

Bob Berniechi, P.E

ise President and General Manager

Signature:

Residuals Processing Inc.

Date: 2-25-99

Residuals Processing Inc.

Date: 2-24-99

The management practices were met as follows:

- (a) Sites currently in agricultural production or drastically disturbed lands are not potential habitat for endangered species. Sites which are in a natural state and are converted to agricultural use are evaluated case by case.
- (b). (c) Biosolids are applied under management conditions to prevent the movement of biosolids into wetlands or other waters of the United States. These management practices include adherence to slope restrictions, seasonal water table restrictions, floodplain restrictions, frozen and snow covered soils restrictions, and maintaining buffer zones to surface waters (including the 10 meter set back to waters of the United States unless a reduced buffer zone requirement has been approved by the permitting authority) as required by state and internal operating standards.
- (d) Biosolids are applied at agronomic rates based on regional, state, and local crop nitrogen requirements. Reclamation rates are established directly with the permitting authority.

The site restrictions were met through written agreements with the landowner and/or farm operator (leaseholder) specifying their obligation to comply with the site restrictions.

"I certify, under penalty of law, that the management practices in §503.14 and the site restrictions in §503.32(b)(5) have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices and site restrictions have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Project(s):

Oceanside, CA San Luis Rey WWTP

Reporting Period:

February 1999

Name:

John Pugliaresi

Operations Manager

Residuals Processing Inc.

Signature:

Name:

Bob Bernicchi, P.E.

Vice President and General Manager

Residuals Processing Inc.

Signature:

Date: 3-24-59

The management practices were met as follows:

- (a) Sites currently in agricultural production or drastically disturbed lands are not potential habitat for endangered species. Sites which are in a natural state and are converted to agricultural use are evaluated case by case.
- (b), (c) Biosolids are applied under management conditions to prevent the movement of biosolids into wetlands or other waters of the United States. These management practices include adherence to slope restrictions, seasonal water table restrictions, floodplain restrictions, frozen and snow covered soils restrictions, and maintaining buffer zones to surface waters (including the 10 meter set back to waters of the United States unless a reduced buffer zone requirement has been approved by the permitting authority) as required by state and internal operating standards.
- (d) Biosolids are applied at agronomic rates based on regional, state, and local crop nitrogen requirements. Reclamation rates are established directly with the permitting authority.

The site restrictions were met through written agreements with the landowner and/or farm operator (leaseholder) specifying their obligation to comply with the site restrictions.

"I certify, under penalty of law, that the management practices in §503.14 and the site restrictions in §503.32(b)(5) have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices and site restrictions have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Project(s):

Oceanside, CA San Luis Rey WWTP

Reporting Period:

March 1999

Name:

John Pugliaresi

Operations Manager

Residuals Processing Inc.

Signature:

Name:

Bob Bernicchi, P.E.

Vice President and General Manager

Residuals Processing Inc.

Date:

Signature:

Date: 6-17-99

The management practices were met as follows:

- (a) Sites currently in agricultural production or drastically disturbed lands are not potential habitat for endangered species. Sites which are in a natural state and are converted to agricultural use are evaluated case by case.
- (b), (c) Biosolids are applied under management conditions to prevent the movement of biosolids into wetlands or other waters of the United States. These management practices include adherence to slope restrictions, seasonal water table restrictions, floodplain restrictions, frozen and snow covered soils restrictions, and maintaining buffer zones to surface waters (including the 10 meter set back to waters of the United States unless a reduced buffer zone requirement has been approved by the permitting authority) as required by state and internal operating standards.
- (d) Biosolids are applied at agronomic rates based on regional, state, and local crop nitrogen requirements. Reclamation rates are established directly with the permitting authority.

The site restrictions were met through written agreements with the landowner and/or farm operator (leaseholder) specifying their obligation to comply with the site restrictions.

"I certify, under penalty of law, that the management practices in §503.14 and the site restrictions in §503.32(b)(5) have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices and site restrictions have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Project(s):

Oceanside, CA San Luis Rey WWTP

Reporting Period:

April 1999

Name:

John Pugliaresi

Operations Manager

Residuals Processing Inc.

Signature:

Name:

Bob Bernicchi, P.E.

Vice President and General Manager

Signature:

Date: 6-17-99

Residuals Processing Inc.

The management practices were met as follows:

- (a) Sites currently in agricultural production or drastically disturbed lands are not potential habitat for endangered species. Sites which are in a natural state and are converted to agricultural use are evaluated case by case.
- (b), (c) Biosolids are applied under management conditions to prevent the movement of biosolids into wetlands or other waters of the United States. These management practices include adherence to slope restrictions, seasonal water table restrictions, floodplain restrictions, frozen and snow covered soils restrictions, and maintaining buffer zones to surface waters (including the 10 meter set back to waters of the United States unless a reduced buffer zone requirement has been approved by the permitting authority) as required by state and internal operating standards.
- (d) Biosolids are applied at agronomic rates based on regional, state, and local crop nitrogen requirements. Reclamation rates are established directly with the permitting authority.

The site restrictions were met through written agreements with the landowner and/or farm operator (leaseholder) specifying their obligation to comply with the site restrictions.

"I certify, under penalty of law, that the management practices in §503.14 and the site restrictions in §503.32(b) (5) have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices and site restrictions have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Projects(s): OCEANSIDE, CA SAN LUIS REY WWTP

Reporting Period: May 1999

Name: John Pugliaresi

R.P.I./Bio Gro

Signature:

Date /25

Name: Bob Bernicchi

R.P.I. / Bio Gro

Signature:

Date 1-28-99

The management practices were met as follows:

- (a) Sites currently in agricultural production or drastically disturbed lands are not potential habitat for endangered species. Sites which are in a natural state and are converted to agricultural use are evaluated case by case.
- (b), (c) Biosolids are applied under management conditions to prevent the movement of biosolids into wetlands or other waters of the United States. These management practices include adherence to slope restricitons, seasonal water table restricitons, floodplain restrictions, frozen and snow covered soils restrictions, and maintaining buffer zones to surface waters (including the 10 meter set back to waters of the United States unless a reduced buffer zone requirement has been approved by the permitting authority) as required by state and internal operating standards.
- (d) Biosolids are applied at agronomic rates based on regional, state, and local crop nitrogen requirements. Reclaimation rates are established directly with the permitting authority.

The site restrictions were met through written agreements with the landowner and/or farm operator (leaseholder) specifying their obligation to comply with the site restrictions.

"I certify, under penalty of law, that the management practices in §503.14 and the site restrictions in §503.32(b) (5) have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices and site restrictions have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

OCEANSIDE, CA SAN LUIS REY WWTP Projects(s):

Reporting Period: June 1999

Name: John Pugliaresi

R.P.I./ Bio Gro

Signature:

Signature:

Name: Bob Bernicchi

R.P.I. / Bio Gro

The management practices were met as follows:

- Sites currently in agricultural production or drastically disturbed lands are not potential habitat for (a) endangered species. Sites which are in a natural state and are converted to agricultural use are evaluated case by case.
- Biosolids are applied under management conditions to prevent the movement of biosolids into (b), (c) wetlands or other waters of the United States. These management practices include adherence to slope restricitons, seasonal water table restricitons, floodplain restrictions, frozen and snow covered soils restrictions, and maintaining buffer zones to surface waters (including the 10 meter set back to waters of the United States unless a reduced buffer zone requirement has been approved by the permitting authority) as required by state and internal operating standards.
- (d) Biosolids are applied at agronomic rates based on regional, state, and local crop nitrogen requirements. Reclamation rates are established directly with the permitting authority.

The site restrictions were met through written agreements with the landowner and/or farm operator (leaseholder) specifying their obligation to comply with the site restrictions.

"I certify, under penalty of law, that the management practices in §503.14 and the site restrictions in §503.32(b)(5) have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices and site restrictions have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Project(s):

Oceanside, CA San Luis Rey WWTP

Reporting Period:

July 1999

Name:

Name:

John Pugliaresi

Operations Manager

Signature:

Bob Bernicchi, P.E.

Vice President and General Manager

Residuals Processing Inc.

Residuals Processing Inc.

Signature:

The management practices were met as follows:

- (a) Sites currently in agricultural production or drastically disturbed lands are not potential habitat for endangered species. Sites which are in a natural state and are converted to agricultural use are evaluated case by case.
- (b), (c) Biosolids are applied under management conditions to prevent the movement of biosolids into wetlands or other waters of the United States. These management practices include adherence to slope restrictions, seasonal water table restrictions, floodplain restrictions, frozen and snow covered soils restrictions, and maintaining buffer zones to surface waters (including the 10 meter set back to waters of the United States unless a reduced buffer zone requirement has been approved by the permitting authority) as required by state and internal operating standards.
- (d) Biosolids are applied at agronomic rates based on regional, state, and local crop nitrogen requirements. Reclamation rates are established directly with the permitting authority.

The site restrictions were met through written agreements with the landowner and/or farm operator (leaseholder) specifying their obligation to comply with the site restrictions.

"I certify, under penalty of law, that the management practices in §503.14 and the site restrictions in §503.32(b)(5) have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices and site restrictions have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Project(s):

Oceanside, CA San Luis Rey WWTP

Reporting Period:

August 1999

Name:

John Pugliaresi

Operations Manager

RPI/Bio Gro

Signature:

Name: B

Bob Bernicchi, P.E.

Vice President and General Manager

Signature:

RPI/Bio Gro

Date: 9-07-97

The management practices were met as follows:

- (a) Sites currently in agricultural production or drastically disturbed lands are not potential habitat for endangered species. Sites which are in a natural state and are converted to agricultural use are evaluated case by case.
- (b), (c) Biosolids are applied under management conditions to prevent the movement of biosolids into wetlands or other waters of the United States. These management practices include adherence to slope restrictions, seasonal water table restrictions, floodplain restrictions, frozen and snow covered soils restrictions, and maintaining buffer zones to surface waters (including the 10 meter set back to waters of the United States unless a reduced buffer zone requirement has been approved by the permitting authority) as required by state and internal operating standards.
- (d) Biosolids are applied at agronomic rates based on regional, state, and local crop nitrogen requirements. Reclamation rates are established directly with the permitting authority.

The site restrictions were met through written agreements with the landowner and/or farm operator (leaseholder) specifying their obligation to comply with the site restrictions.

"I certify, under penalty of law, that the management practices in §503.14 and the site restrictions in §503.32(b)(5) have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices and site restrictions have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Project(s):

Oceanside, CA San Luis Rey WWTP

Reporting Period:

September 1999

Name:

Name:

John Pugliaresi

RPI/Bio Gro

Signature:

٠. -

Bob Bernicchi, P.E.

Operations Manager

RPI/Bio Gro

Vice President and General Manager

Signature:

Date:

The management practices were met as follows:

- (a) Sites currently in agricultural production or drastically disturbed lands are not potential habitat for endangered species. Sites which are in a natural state and are converted to agricultural use are evaluated case by case.
- (b), (c) Biosolids are applied under management conditions to prevent the movement of biosolids into wetlands or other waters of the United States. These management practices include adherence to slope restrictions, seasonal water table restrictions, floodplain restrictions, frozen and snow covered soils restrictions, and maintaining buffer zones to surface waters (including the 10 meter set back to waters of the United States unless a reduced buffer zone requirement has been approved by the permitting authority) as required by state and internal operating standards.
- (d) Biosolids are applied at agronomic rates based on regional, state, and local crop nitrogen requirements. Reclamation rates are established directly with the permitting authority.

The site restrictions were met through written agreements with the landowner and/or farm operator (leaseholder) specifying their obligation to comply with the site restrictions.

"I certify, under penalty of law, that the information that will be used to determine compliance with the management practices in §503.14 and the site restrictions in §503.32(b)(5) was prepared for each site on which bulk sewage sludge was applied under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate this information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Project(s): Oceanside, CA San Luis Rey WWTP

Reporting Period: October 1999

Bob Bernicchi

Name:

ne: John Pugliaresi RPI - Bio Gro

Signature: Date: ///2/17

Signature: Date: 1 - 1 4 - 60

The management practices were met as follows:

(a) Sites currently in agricultural production or drastically disturbed lands are not potential habitat for endangered species. Sites which are in a natural state and are converted to agricultural use are evaluated case by case.

RPI - Bio Gro

- (b), (c) Biosolids are applied under management conditions to prevent the movement of biosolids into wetlands or other waters of the United States. These management practices include adherence to slope restrictions, seasonal water table restrictions, floodplain restrictions, frozen and snow covered soils restrictions, and maintaining buffer zones to surface waters (including the 10 meter set back to waters of the United States unless a reduced buffer zone requirement has been approved by the permitting authority) as required by state and internal operating standards.
- (d) Biosolids are applied at agronomic rates based on regional, state, and local crop nitrogen requirements. Reclamation rates are established directly with the permitting authority.

The site restrictions were met through written agreements with the landowner and/or farm operator (leaseholder) specifying their obligation to comply with the site restrictions.

"I certify, under penalty of law, that the information that will be used to determine compliance with the management practices in §503.14 and the site restrictions in §503.32(b)(5) was prepared for each site on which bulk sewage sludge was applied under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate this information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Project(s): Oceanside, CA San Luis Rey WWTP

Reporting Period: November 1999

Signature:

Name: John Pugliaresi RPI - Bio Gro

Name: Bob Bernicchi RPI - Bio Gro

The management practices were met as follows:

- (a) Sites currently in agricultural production or drastically disturbed lands are not potential habitat for endangered species. Sites which are in a natural state and are converted to agricultural use are evaluated case by case.
- (b), (c) Biosolids are applied under management conditions to prevent the movement of biosolids into wetlands or other waters of the United States. These management practices include adherence to slope restrictions, seasonal water table restrictions, floodplain restrictions, frozen and snow covered soils restrictions, and maintaining buffer zones to surface waters (including the 10 meter set back to waters of the United States unless a reduced buffer zone requirement has been approved by the permitting authority) as required by state and internal operating standards.
- (d) Biosolids are applied at agronomic rates based on regional, state, and local crop nitrogen requirements. Reclamation rates are established directly with the permitting authority.

The site restrictions were met through written agreements with the landowner and/or farm operator (leaseholder) specifying their obligation to comply with the site restrictions.

"I certify, under penalty of law, that the information that will be used to determine compliance with the management practices in §503.14 and the site restrictions in §503.32(b)(5) was prepared for each site on which bulk sewage sludge was applied under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate this information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Project(s): Oceanside, CA San Luis Rey WWTP

Reporting Period: December 1999

Name: Bob Bensicchi

Name: John Pugliaresi RPI - Bio Gro

Signature: Date: 1-14-00

The management practices were met as follows:

(a) Sites currently in agricultural production or drastically disturbed lands are not potential habitat for endangered species. Sites which are in a natural state and are converted to agricultural use are evaluated case by case.

RPI - Bio Gro

- (b), (c) Biosolids are applied under management conditions to prevent the movement of biosolids into wetlands or other waters of the United States. These management practices include adherence to slope restrictions, seasonal water table restrictions, floodplain restrictions, frozen and snow covered soils restrictions, and maintaining buffer zones to surface waters (including the 10 meter set back to waters of the United States unless a reduced buffer zone requirement has been approved by the permitting authority) as required by state and internal operating standards.
- (d) Biosolids are applied at agronomic rates based on regional, state, and local crop nitrogen requirements. Reclamation rates are established directly with the permitting authority.

The site restrictions were met through written agreements with the landowner and/or farm operator (leaseholder) specifying their obligation to comply with the site restrictions.

"I certify, under penalty of law, that the information that will be used to determine compliance with the management practices in §503.14 and the site restrictions in §503.32(b)(5) was prepared for each site on which bulk sewage sludge was applied under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate this information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Project(s): Oceanside, CA La Salina WWTP

Reporting Period: December 1999

Signature:

Name: John Pugliaresi RPI - Bio Gro

Name: Bob/Bernicchi RPI - Bio Gro

Signature: Date: 1-14-00

The management practices were met as follows:

- (a) Sites currently in agricultural production or drastically disturbed lands are not potential habitat for endangered species. Sites which are in a natural state and are converted to agricultural use are evaluated case by case.
- (b), (c) Biosolids are applied under management conditions to prevent the movement of biosolids into wetlands or other waters of the United States. These management practices include adherence to slope restrictions, seasonal water table restrictions, floodplain restrictions, frozen and snow covered soils restrictions, and maintaining buffer zones to surface waters (including the 10 meter set back to waters of the United States unless a reduced buffer zone requirement has been approved by the permitting authority) as required by state and internal operating standards.
- (d) Biosolids are applied at agronomic rates based on regional, state, and local crop nitrogen requirements. Reclamation rates are established directly with the permitting authority.

The site restrictions were met through written agreements with the landowner and/or farm operator (leaseholder) specifying their obligation to comply with the site restrictions.